FREE BOOKS

Author's List




PREV.   NEXT  
|<   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92  
93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>   >|  
have been discharged to the voltage limits are allowed to stand idle without being charged, they will, of course, continue to discharge themselves just as fully charged batteries do when allowed to stand idle. 3. Starvation. If a battery is charged and discharged intermittently, and the discharge is greater than the charge, the battery will never be fully charged, and lead sulphate will always be present. Gradually this sulphate forms the large tough crystals that cover the active material and remove it from action. This action continues until all parts of the plate are covered with the crystalline sulphate and we have the same condition that results when a battery is allowed to stand idle without any charge. 4. Allowing Electrolyte to Fall Below Tops of Plates. If the electrolyte is allowed to fall below the tops of the plates, so that the active materials are exposed to the air, the parts thus exposed will gradually become sulphated. The spongy lead of the negative plate, being in a very finely divided state, offers a very large surface to the oxygen of the air, and is rapidly oxidized, the chemical action causing the active material to become hot. The charging current, in passing through the parts of the plates not covered by the electrolyte also heats the active materials. The electrolyte which occasionally splashes over the exposed parts of the plates and which rises in the pores of the separators, is heated also, and since hot acid attacks the active materials readily, sulphation takes place quickly. The parts above the electrolyte, of course, cannot be charged and sulphate continues to form. Soon the whole exposed parts are sulphated as shown in Fig. 209. As the level of the electrolyte drops, the electrolyte becomes stronger, because it is only the water which evaporates, the acid remaining and becoming more and more concentrated. The remaining electrolyte and the parts of the plates covered by it become heated by the current, because there is a smaller plate area to carry the current, and because the resistance of the electrolyte increases as it grows more concentrated. Since hot acid attacks the active materials, sulphation also takes place in the parts of the plates still covered by the electrolyte. The separators in a battery having the electrolyte below the tops of the plates suffer also, as will be explained later. See page 346. 5. Impurities. These are explained later. See page 76. 6. Addin
PREV.   NEXT  
|<   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92  
93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>   >|  



Top keywords:
electrolyte
 

active

 

plates

 
charged
 

battery

 

materials

 

covered

 

sulphate

 
exposed
 
allowed

action

 

current

 

concentrated

 

material

 

discharged

 

continues

 

sulphation

 

sulphated

 

remaining

 
attacks

explained
 

discharge

 
charge
 

heated

 

separators

 

occasionally

 

readily

 
splashes
 
quickly
 

increases


resistance
 

suffer

 

Impurities

 

smaller

 

evaporates

 

stronger

 

divided

 

remove

 

crystals

 

crystalline


Gradually

 

Starvation

 

batteries

 
intermittently
 

greater

 

present

 

continue

 

condition

 

results

 

offers