FREE BOOKS

Author's List




PREV.   NEXT  
|<   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362  
363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   >>   >|  
s do not yet indicate definite limits to the possibilities of exploration for most mineral resources, and of the consequent fact that for a long time in the future, as in the past, discoveries of new mineral deposits will be roughly proportional to the effort and money spent in finding them,--which means, also, proportional to the demand,--makes it impossible, for most of the mineral resources, to set any definite limits on reserves. It is comparatively easy to measure known reserves; but a quantitative appraisal of the probable and possible reserves for the future is extremely difficult. Successive revisions of estimates have, with but few exceptions, progressively increased the total mineral supplies available. The result is that the time of exhaustion has been pushed far into the future for most of the important minerals, thus minimizing the urge for immediate and drastic conservational action, which followed naturally from early estimates of very limited supplies. For both coal and iron, supplies are now known for hundreds or even thousands of years. For oil and lead, on the other hand, the reserves now known have a life of comparatively few years, but the possibilities for successful exploration make it probable that their life will be greatly extended. Notwithstanding this tendency to lengthen the exhaustion period, the limits of mineral resource life are still small as compared with the life of the nation or of civilization,--and the fundamental desirability of conservation is not materially affected. It is not easy to predict the rate of production for the future. At the present rate of coal production in the United States, the supplies to a depth of 6,000 feet might last 6,000 years; but if it be assumed that the recent _acceleration_ of production will be continued indefinitely into the future, the result would be exhaustion of these supplies in less than 200 years. It is generally agreed that exhaustion will come sooner than 6,000 years, but will require more time than 200 years. The range between these figures offers wide opportunity for guessing. It is supposed that per capita consumption may not increase as fast in the future as in the past, that possibly an absorption point will be reached, and that there will be limits to transportation and distribution; but how to evaluate these factors no one knows. In the case of some of the metallic resources, such as iron, the fact that the world's stock on hand is
PREV.   NEXT  
|<   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362  
363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   >>   >|  



Top keywords:

future

 

supplies

 
mineral
 

limits

 

exhaustion

 
reserves
 
resources
 
production
 

probable

 

estimates


comparatively
 

result

 

exploration

 
possibilities
 
proportional
 
definite
 
assumed
 

continued

 

recent

 
acceleration

indefinitely

 

agreed

 

sooner

 

generally

 

materially

 
affected
 

predict

 

conservation

 

desirability

 

civilization


fundamental

 

present

 
require
 

United

 

States

 

evaluate

 

factors

 
distribution
 

reached

 

transportation


metallic

 

absorption

 

opportunity

 

guessing

 

offers

 
figures
 
nation
 

supposed

 

possibly

 

increase