FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  
nt of our steel industries in the last decade, the improvements in the modes of manufacture, and the undoubted strength of the metal under certain circumstances, nevertheless we find that steel has not altogether met the requirements of engineers as a structural material. Although its breaking strain and elastic limit are higher than those of wrought iron, the latter metal is frequently preferred and selected for tensile members, even when steel is used under compression in the same structure. The Niagara cantilever bridge is a notable instance of this practice. When steel is used in tension its working strains are not allowed to be over fifty per cent. above those adopted for wrought iron. The reasons for the suspicion with which steel is regarded are well understood. Not only is there a lack of uniformity in the product, but apparently the same steel will manifest very different results under slight provocation. Steel is very sensitive, not only to slight changes in chemical composition, but also to mechanical treatment, such as straightening, bending, punching, planing, heating, etc. Initial strains may be developed by any of these processes that would seriously affect the efficiency of the metal in service. Among the steels, those that are softer are more serviceable and reliable than the harder ones, especially whereever shocks and concussions or rapidly alternating strains are to be endured. In other words, the more nearly steel resembles good wrought iron, the more certain it is to render lasting service when used within appropriate limits of strain. Indeed, a wrought iron of fine quality is better calculated to endure fatigue than any steel. This is particularly noticeable in steam hammer pistons, propeller shafts, and railroad axles. A better quality of wrought iron, therefore, has long been a desideratum, and it appears now that it has at last been found. Several years since, a pneumatic process of manufacturing wrought iron was invented and patented by Dr. Chapin, and an experimental plant was erected near Chicago. Enough was done to demonstrate, first, that an iron of unprecedentedly good qualities was attainable from common pig; and second, that the cost of its manufacture would not exceed that of Bessemer steel. Nevertheless, owing to lack of funds properly to push the invention against the jealous opposition which it encountered, the enterprise came to a halt until quite recently, when its merits fo
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  



Top keywords:
wrought
 

strains

 

strain

 
slight
 

quality

 

service

 
manufacture
 

noticeable

 

hammer

 
pistons

shafts

 

propeller

 

railroad

 
endured
 
alternating
 

rapidly

 

whereever

 

shocks

 
concussions
 

resembles


calculated

 

endure

 

fatigue

 

Indeed

 

limits

 

render

 

lasting

 

desideratum

 

Chapin

 

Nevertheless


properly

 

Bessemer

 
exceed
 

common

 

invention

 
recently
 

merits

 

jealous

 

opposition

 

encountered


enterprise

 

attainable

 
process
 

pneumatic

 

manufacturing

 
invented
 

patented

 
Several
 
demonstrate
 
unprecedentedly