FREE BOOKS

Author's List




PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  
amount of white light is at C; the yellow contains less of the chemical power than any other portion of the solar spectrum. It has been found that the most intense heat is at the extreme red, b. Artificial lights differ in their color; the white light of burning charcoal, which is the principal light from candles, oil and gas, contains three rays--red, yellow, and blue. The dazzling light emitted from lime intensely heated, known as the Drummond light, gives the colors of the prism almost as bright as the solar spectrum. If we expose a prepared Daguerreotype plate or sensitive paper to the solar spectrum, it will be observed that the luminous power (the yellow) occupies but a small space compared with the influence of heat and chemical power. R. Hunt, in his Researches on Light, has presented the following remarks upon the accompanying illustration: [Illustration: Fig. 3 (amdg_3.gif)] "If the linear measure, or the diameter of a circle which shall include the luminous rays, is 25, that of the calorific spectrum will be 42.10, and of the chemical spectrum 55.10. Such a series of circles may well be used to represent a beam from the sun, which may be regarded as an atom of Light, surrounded with an invisible atmosphere of Heat, and another still more extended, which possesses the remarkable property of producing chemical and molecular change. A ray of light, in passing obliquely through any medium of uniform density, does not change its course; but if it should pass into a denser body, it would turn from a straight line, pursue a less oblique direction, and in a line nearer to a perpendicular to the surface of that body. Water exerts a stronger refracting power than air; and if a ray of light fall upon a body of this fluid its course is changed, as may be seen by reference to Fig. 4. [Illustration: Fig. 4 (amdg_4.gif)] It is observed that it proceeds in a less oblique direction (towards the dotted line), and, on passing on through, leaves the liquid, proceeding in a line parallel to that at which it entered. It should be observed that at the surface of bodies the refractive power is exerted, and that the light proceeds in a straight line until leaving the body. The refraction is more or less, and in all cases in proportion as the rays fall more or less obliquely on the refracting surface. It is this law of optics which has given rise to the lenses in our camera tubes, by which means we are enabled t
PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  



Top keywords:

spectrum

 

chemical

 

surface

 
yellow
 
observed
 

direction

 

luminous

 

refracting

 
obliquely
 

passing


change
 

straight

 

Illustration

 

oblique

 

proceeds

 

lenses

 

camera

 

density

 
optics
 

uniform


enabled

 

molecular

 

producing

 

property

 

possesses

 

extended

 

medium

 

remarkable

 

denser

 

leaves


dotted

 

liquid

 
proceeding
 

parallel

 

exerts

 

changed

 

stronger

 
reference
 
entered
 

perpendicular


proportion

 
refraction
 

leaving

 

bodies

 
nearer
 
refractive
 

exerted

 

pursue

 

measure

 

intensely