FREE BOOKS

Author's List




PREV.   NEXT  
|<   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   >>  
screw _C_, and the required center-to-center distance between the two cylinders can be gaged by the micrometer dial _M_ on the cross-feed screw, although positive stops are often used in preference. After the first cylinder is bored, the dial is set to the zero position by loosening the small knurled screw shown, and turning the dial around. The feed screw is then rotated until the dial shows that the required lateral adjustment is made, which locates the casting for boring the second cylinder. The end of the casting is also faced true by a milling cutter. Ordinarily, milling cutters are bolted directly to the spindle sleeve _A_ on this particular machine, which gives a rigid support for the cutter and a powerful drive. [Illustration: Fig. 11. Cylinder turned around for Machining Valve Seats] The next operation is that of boring and milling the opposite end of the cylinder. This end is turned toward the spindle (as shown in Fig. 11) without unclamping the work or fixture, by simply turning the circular table _T_ half way around. This table is an attachment which is clamped to the main table for holding work that must be turned to different positions for machining the various parts. Its position is easily changed, and as the work remains fixed with relation to the table, the alignment between different holes or surfaces is assured, if the table is turned the right amount. In this case, the casting needs to be rotated one-half a revolution or 180 degrees, and this is done by means of angular graduations on the base of the table. The illustration shows the casting set for boring the inlet and exhaust valve chambers. The different cutters required for boring are mounted on one bar as shown, and the casting is adjusted crosswise to bring each valve chamber in position, by using the micrometer dial. The single-ended cutter _c_ forms a shallow circular recess or seat in the raised pad which surrounds the opening. The cover joint directly back of the cylinders is finished by milling. [Illustration: Fig. 12. Boring Differential Gear Casing] =Examples of Boring, Radial Facing and Milling.=--Another example of boring, in which the circular table is used, is shown in Fig. 12. The work _W_ is a casing for the differential gears of an automobile. It is mounted in a fixture _F_ which is bolted to the table. The casting has round ends, which are clamped in V-blocks, thus aligning the work. This fixture has a guide-bushing _G_
PREV.   NEXT  
|<   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   >>  



Top keywords:

casting

 

boring

 
milling
 

turned

 

cutter

 
circular
 

fixture

 
position
 
required
 

cylinder


bolted
 

directly

 

spindle

 

cutters

 

Boring

 

center

 

clamped

 

mounted

 

cylinders

 
Illustration

rotated
 

turning

 

micrometer

 
chambers
 
automobile
 

exhaust

 

crosswise

 
bushing
 

adjusted

 

illustration


revolution
 

amount

 

degrees

 
chamber
 

graduations

 

angular

 

casing

 

finished

 

blocks

 
Another

Examples

 
Radial
 

Casing

 
Milling
 
Differential
 

shallow

 
Facing
 

single

 

recess

 
differential