FREE BOOKS

Author's List




PREV.   NEXT  
|<   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242  
243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   >>   >|  
memoir on this subject: yet it is an admirable lesson to stand on the intermediate hilly country and look on the one hand at the North Downs, and {286} on the other hand at the South Downs; for, remembering that at no great distance to the west the northern and southern escarpments meet and close, one can safely picture to oneself the great dome of rocks which must have covered up the Weald within so limited a period as since the latter part of the Chalk formation. The distance from the northern to the southern Downs is about 22 miles, and the thickness of the several formations is on an average about 1100 feet, as I am informed by Prof. Ramsay. But if, as some geologists suppose, a range of older rocks underlies the Weald, on the flanks of which the overlying sedimentary deposits might have accumulated in thinner masses than elsewhere, the above estimate would be erroneous; but this source of doubt probably would not greatly affect the estimate as applied to the western extremity of the district. If, then, we knew the rate at which the sea commonly wears away a line of cliff of any given height, we could measure the time requisite to have denuded the Weald. This, of course cannot be done; but we may, in order to form some crude notion on the subject, assume that the sea would eat into cliffs 500 feet in height at the rate of one inch in a century. This will at first appear much too small an allowance; but it is the same as if we were to assume a cliff one yard in height to be eaten back along a whole line of coast at the rate of one yard in nearly every twenty-two years. I doubt whether any rock, even as soft as chalk, would yield at this rate excepting on the most exposed coasts; though no doubt the degradation of a lofty cliff would be more rapid from the breakage of the fallen fragments. On the other hand, I do not believe that any line of coast, ten or twenty miles in length, ever suffers degradation at the same time along its whole indented length; and we {287} must remember that almost all strata contain harder layers or nodules, which from long resisting attrition form a breakwater at the base. We may at least confidently believe that no rocky coast 500 feet in height commonly yields at the rate of a foot per century; for this would be the same in amount as a cliff one yard in height retreating twelve yards in twenty-two years; and no one, I think, who has carefully observed the shape of old fallen fragments at the
PREV.   NEXT  
|<   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242  
243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   >>   >|  



Top keywords:
height
 

twenty

 

fragments

 

fallen

 

assume

 

length

 
century
 

estimate

 

degradation

 

commonly


distance
 

southern

 
northern
 
subject
 

cliffs

 

allowance

 
yields
 

amount

 

retreating

 

carefully


twelve

 

observed

 

layers

 

harder

 

nodules

 
breakage
 

remember

 

suffers

 

strata

 

attrition


breakwater

 

indented

 
coasts
 
resisting
 
exposed
 

excepting

 

confidently

 

district

 

period

 
limited

covered

 

formation

 

average

 

informed

 
formations
 

thickness

 

oneself

 

intermediate

 
country
 

lesson