FREE BOOKS

Author's List




PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  
ilology at the university. He himself entered the university in 1828, and in 1834 became _Privat-docent_. In 1836 he became teacher of chemistry at the Polytechnic School of Cassel, and in 1839 took up the appointment of professor of chemistry at Marburg, where he remained till 1851. In 1852, after a brief period in Breslau, he was appointed to the chair of chemistry at Heidelberg, where he spent the rest of his life, in spite of an urgent invitation to migrate to Berlin as successor to E. Mitscherlich. He retired from active work in 1889, and died at Heidelberg on the 16th of August 1899. The first research by which attention was drawn to Bunsen's abilities was concerned with the cacodyl compounds (see ARSENIC), though he had already, in 1834, discovered the virtues of freshly precipitated hydrated ferric oxide as an antidote to arsenical poisoning. It was begun in 1837 at Cassel, and during the six years he spent upon it he not only lost the sight of one eye through an explosion, but nearly killed himself by arsenical poisoning. It represents almost his only excursion into organic chemistry, and apart from its accuracy and completeness it is of historical interest in the development of that branch of the science as being the forerunner of the fruitful investigations on the organo-metallic compounds subsequently carried out by his English pupil, Edward Frankland. Simultaneously with his work on cacodyl, he was studying the composition of the gases given off from blast furnaces. He showed that in German furnaces nearly half the heat yielded by the fuel was being allowed to escape with the waste gases, and when he came to England, and in conjunction with Lyon Playfair investigated the conditions obtaining in English furnaces, he found the waste to amount to over 80%. These researches marked a stage in the application of scientific principles to the manufacture of iron, and they led also to the elaboration of Bunsen's famous methods of measuring gaseous volumes, &c., which form the subject of the only book he ever published (_Gasometrische Methoden_, 1857). In 1841 he invented the carbon-zinc electric cell which is known by his name, and which conducted him to several important achievements. He first employed it to produce the electric arc, and showed that from 44 cells a light equal to 1171.3 candles could be obtained with the consumption of one pound of zinc per hour. To measure this light he designed in 1844 another instr
PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  



Top keywords:

chemistry

 

furnaces

 

English

 

electric

 

showed

 
Heidelberg
 
cacodyl
 

compounds

 

arsenical

 

poisoning


Bunsen

 

Cassel

 

university

 

conditions

 
obtaining
 

measure

 

investigated

 

Playfair

 

designed

 
conjunction

marked
 

researches

 
amount
 

England

 

Edward

 

Simultaneously

 
German
 

studying

 

composition

 

Frankland


escape

 

allowed

 

yielded

 

scientific

 

invented

 

carbon

 

Methoden

 

published

 

Gasometrische

 

employed


important

 

produce

 

conducted

 

elaboration

 

famous

 

methods

 

achievements

 
principles
 

manufacture

 

measuring