FREE BOOKS

Author's List




PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  
r" in one mass where it would do the most good. The farmer who makes use of the energy of falling water to generate electricity for light, heat, and power does the same thing--he makes use of the capacity for work stored in water in being lifted to a certain height. As in the case of the gasoline engine, which burns 14 pounds of air for every pound of gasoline, the engineer of the water-power plant does not have to concern himself with the question of how this natural source of energy happened to be in a handy place for him to make use of it. The sun, shining on the ocean, and turning water into vapor by its heat has already lifted it up for him. This vapor floating in the air and blown about by winds, becomes chilled from one cause or another, gives up its heat, turns back into water, and falls as rain. This rain, falling on land five, ten, a hundred, a thousand, or ten thousand feet above the sea level, begins to run back to the sea, picking out the easiest road and cutting a channel that we call a brook, a stream, or a river. Our farm lands are covered to an average depth of about three feet a year with water, every gallon of which has stored in it the energy expended by the heat of the sun in lifting it to the height where it is found. The farmer, prospecting on his land for water-power, locates a spot on a stream which he calls Supply; and another spot a few feet down hill near the same stream, which he calls Power. Every gallon of water that falls between these two points, and is made to escape through the revolving blades of a water wheel is capable of work in terms of foot-pounds--an amount of work that is directly proportional to the _quantity_ of water, and to the _distance_ in feet which it falls to reach the wheel--_pounds_ and _feet_. _The Efficient Water Wheel_ And it is a very efficient form of work, too. In fact it is one of the most efficient forms of mechanical energy known--and one of the easiest controlled. A modern water wheel uses 85 per cent of the total capacity for work imparted to falling water by gravity, and delivers it as rotary motion. Compare this water wheel efficiency with other forms of mechanical power in common use: Whereas a water wheel uses 85 per cent of the energy of its water supply, and wastes only 15 per cent, a gasoline engine reverses the table, and delivers only 15 per cent of the energy in gasoline and wastes 85 per cent--and it is rather a high-class gasoline en
PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  



Top keywords:

energy

 

gasoline

 

stream

 

pounds

 
falling
 

mechanical

 

delivers

 

wastes

 

easiest

 

gallon


efficient

 

thousand

 

capacity

 
engine
 
stored
 
farmer
 

lifted

 

height

 

amount

 

Efficient


distance

 

quantity

 

proportional

 
directly
 

electricity

 

revolving

 
blades
 
escape
 

points

 
capable

common
 

Whereas

 
supply
 

efficiency

 
motion
 

Compare

 

reverses

 
rotary
 

Supply

 

generate


controlled

 
imparted
 

gravity

 

modern

 
chilled
 

engineer

 

floating

 

natural

 
shining
 

source