FREE BOOKS

Author's List




PREV.   NEXT  
|<   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218  
219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   >>   >|  
ure--a weight amounting to about fifteen pounds to the square inch--the temperature at which the ice will melt is lowered to the amount of sixteen thousandths of a degree centigrade. If we take a piece of ice at the temperature of freezing and put upon it a sufficient weight, we inevitably bring about a small amount of melting. Where we can examine the mass under favourable conditions, we can see the fluid gather along the lines of the crystals or other bits of which the ice is composed. We readily note this action by bringing two pieces of ice together with a slight pressure; when the pressure is removed, they will adhere. The adhesion is brought about not by any stickiness of the materials, for the substance has no such property. It is accomplished by melting along the line of contact, which forms a film of water, that at once refreezes when the pressure is withdrawn. When a firm snowball is made by even pressing snow, innumerable similar adhesions grow up in the manner described. The fact is that, given ice at the temperature at which it ordinarily forms, pressure upon it will necessarily develop melting. The consequences of pressure melting as above described are in glaciers extremely complicated. Because the ice is built into the glacier at a temperature considerably below the freezing point, it requires a great thickness of the mass before the superincumbent weight is sufficient to bring about melting in its lower parts. If we knew the height at which a thermometer would have stood in the surface ice of the ancient glacier which covered the northern part of North America, we could with some accuracy compute how thick it must have been before the effect of pressure alone would have brought about melting; but even then we should have to reckon the temperature derived from the grinding of the ice over the floor and the crushing of rocks there effected, as well as the heat which is constantly though slowly coming forth from the earth's interior. The result is that we can only say that at some depth, probably less than a mile, the slowly accumulating ice would acquire such a temperature that, subjected to the weight above it, the material next the bottom would become molten, or at least converted into a sludgelike state, in which it could not rub against the bottom, or move stones in the manner of ordinary glaciers. As fast as the ice assumed this liquid or softened state, it would be squeezed out toward the regio
PREV.   NEXT  
|<   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218  
219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   >>   >|  



Top keywords:

melting

 

temperature

 

pressure

 

weight

 

manner

 

brought

 
bottom
 
glacier
 

glaciers

 

slowly


freezing

 

amount

 

sufficient

 

effect

 

derived

 

reckon

 

superincumbent

 

grinding

 

America

 
surface

ancient

 

covered

 

thermometer

 

height

 

northern

 

compute

 

accuracy

 

sludgelike

 
converted
 

material


molten

 

stones

 

ordinary

 

squeezed

 

softened

 
assumed
 

liquid

 

subjected

 

acquire

 

constantly


coming

 
crushing
 

effected

 

thickness

 

accumulating

 

interior

 
result
 

composed

 

crystals

 
gather