FREE BOOKS

Author's List




PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  
ther, the mutual attraction of the masses would cause no disturbance of the spheres. The same would be the case if the polar axis of one sphere stood precisely at right angles to that of the other. If, however, the spheres were somewhat flattened at the poles, and the axes inclined to each other, then the pull of one mass on the other would cause the polar axes to keep up a constant movement which is called nutation, or nodding. The reason why this nodding movement of the polar axes would occur when these lines were inclined to each other is not difficult to see if we remember that the attraction of masses upon each other is inversely as the square of the distance; each sphere, pulling on the equatorial bulging of the other, pulls most effectively on the part of it which is nearest, and tends to draw it down toward its centre. The result is that the axes of the attracted spheres are given a wobbling movement, such as we may note in the spinning top, though in the toy the cause of the motion is not that which we are considering. If, now, in that excellent field for the experiment we are essaying, the mind's eye, we add a second planet outside of the single sphere which we have so far supposed to journey about the sun, or rather about the common centre of gravity, we perceive at once that we have introduced an element which leads to a complication of much importance. The new sphere would, of course, pull upon the others in the measure of its gravitative value--i.e., its weight. The centre of gravity of the system would now be determined not by two distinct bodies, but by three. If we conceive the second planet to journey around the sun at such a rate that a straight line always connected the centres of the three orbs, then the only effect on their gravitative centre would be to draw the first-mentioned planet a little farther away from the centre of the sun; but in our own solar system, and probably in all others, this supposition is inadmissible, because the planets have longer journeys to go and also move slower, the farther they are from the sun. Thus Mercury completes the circle of its year in eighty-eight of our days, while the outermost planet requires sixty thousand days (more than one hundred and sixty-four years) for the same task. The result is not only that the centre of gravity of the system is somewhat displaced--itself a matter of no great account--but also that the orbit of the original planet ceases to
PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  



Top keywords:
centre
 

planet

 

sphere

 
movement
 
gravity
 

spheres

 
system
 

result

 
farther
 

journey


gravitative

 

inclined

 

attraction

 

masses

 

nodding

 

conceive

 
displaced
 

matter

 

centres

 

connected


straight

 
bodies
 

distinct

 

weight

 

original

 
ceases
 

measure

 

determined

 

circle

 

account


eighty

 

supposition

 

requires

 

inadmissible

 

outermost

 
journeys
 
planets
 

longer

 

thousand

 

mentioned


completes

 

effect

 

Mercury

 
hundred
 

slower

 
experiment
 

difficult

 

remember

 

inversely

 

square