FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
moving the axis gradually to positions where it approaches the plane of the orbit, he will note that each stage of the change widens the tropic belt. Bringing the polar axis down to the plane of the orbit, one hemisphere would receive unbroken sunshine, the other remaining in perpetual darkness and cold. In this condition, in place of an equatorial line we should have an equatorial point at the pole nearest the sun; thence the temperatures would grade away to the present equator, beyond which half the earth would be in more refrigerating condition than are the poles at the present day. In considering the movements of our planet, we shall see that no great changes in the position of the polar axis can have taken place. On this account the suggested alterations of the axis should not be taken as other than imaginary changes. It is easy to see that with a circular orbit and with an inclined axis winter and summer would normally come always at the same point in the orbit, and that these seasons would be of perfectly even length. But, as we have before noted, the earth's path around the sun is in its form greatly affected by the attractions which are exercised by the neighbouring planets, principally by those great spheres which lie in the realm without its orbit, Jupiter and Saturn. When these attracting bodies, as is the case from time to time, though at long intervals, are brought together somewhere near to that part of the solar system in which the earth is moving around the sun, they draw our planet toward them, and so make its path very elliptical. When, however, they are so distributed that their pulling actions neutralize each other, the orbit returns more nearly to a circular form. The range in its eccentricity which can be brought about by these alterations is very great. When the path is most nearly circular, the difference in the major and minor axis may amount to as little as about five hundred thousand miles, or about one one hundred and eighty-sixth of its average diameter. When the variation is greatest the difference in these measurements may be as much as near thirteen million miles, or about one seventh of the mean width of the orbit. The first and most evident effect arising from these changes of the orbit comes from the difference in the amount of heat which the earth may receive according as it is nearer or farther from the sun. As in the case of other fires, the nearer a body is to it the larger th
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:
circular
 

difference

 

nearer

 
amount
 
present
 

planet

 
hundred
 

alterations

 
receive
 

brought


moving

 

equatorial

 

condition

 

elliptical

 

distributed

 

pulling

 
intervals
 

attracting

 

bodies

 

actions


system

 
seventh
 

million

 

thirteen

 

evident

 
farther
 

effect

 

arising

 

measurements

 

eccentricity


larger

 

returns

 

thousand

 

variation

 

greatest

 
diameter
 
average
 

eighty

 

neutralize

 

temperatures


nearest

 

darkness

 

equator

 
movements
 

refrigerating

 
perpetual
 

remaining

 

approaches

 

gradually

 

positions