FREE BOOKS

Author's List




PREV.   NEXT  
|<   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141  
142   143   144   145   146   >>  
ing the excavation we shored up the sides with planks, to prevent the loose soil from falling in on us and smothering us, as it so nearly did when we were digging our first cave. By "shoring," I mean we lined the walls with planks, which were driven into the ground with large wooden mallets. The planks were braced apart with sticks at frequent intervals. As the well hole grew deeper we had to rig up a bucket to haul the dirt out. Our bucket was a soap box attached to a rope, which passed through a pulley at the top of the well. The pulley was supported by a tripod made by firmly lashing together the upper ends of three stout poles and spreading their lower ends far enough apart to straddle the mouth of the well, as shown in Fig. 282. After the well had been carried down to a sufficient depth, we began laying the stone wall, which was to form the permanent lining. We knew that the wooden walls would not do, because they would soon decay. Our stone wall, which was built up of flat stones like the chimney of the log house, was not very strong, I fear, and had not the soil around it been pretty firm it would probably have caved in. However, if it served no other purpose, it formed a fairly good finish for the well. THE WINDMILL TOWER. [Illustration: Fig. 283. Frame for the Tower.] The mouth of the well was carefully covered with planks while we constructed the windmill above it. For the tower of the windmill we chose four long sticks. They must have measured about 16 feet in length, and were from 4 to 6 inches in diameter. With them we made two frames of the form given in Fig. 283, using slabs to brace them apart. These frames were now set in position, with their lower ends firmly planted in holes in the ground, and the tower was completed by nailing on a number of diagonal braces. A couple of boards were nailed across the upper ends at opposite sides, and holes were drilled through them to provide bearings for the wind wheel shaft. THE CRANK SHAFT. [Illustration: Fig. 284. The Crank Shaft.] The shaft was a piece of heavy iron rod which we procured from the blacksmith at Lumberville. Under Bill's direction the blacksmith hammered a U-shaped bend at the center of the shaft, so as to form a crank, and then he flattened the rod near the ends (see Fig. 284). When the shaft was set in its place these flat spots lay just outside of the bearing boards, and then, to keep the shaft from sliding back and forth in its
PREV.   NEXT  
|<   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141  
142   143   144   145   146   >>  



Top keywords:

planks

 

firmly

 

pulley

 

bucket

 

boards

 

windmill

 
Illustration
 

frames

 

ground

 

sticks


blacksmith

 

wooden

 
diameter
 

inches

 

sliding

 

length

 

constructed

 
covered
 
carefully
 

measured


position

 
flattened
 

center

 
hammered
 
direction
 

Lumberville

 

procured

 

bearings

 
diagonal
 

braces


number

 

nailing

 

planted

 

completed

 

bearing

 

couple

 

opposite

 

drilled

 

provide

 
shaped

nailed

 
stones
 

deeper

 

intervals

 
attached
 

lashing

 

tripod

 

passed

 
supported
 

frequent