FREE BOOKS

Author's List




PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42  
43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   >>   >|  
t is sent to the eye of an observer facing the drop, and with his back to the sun. Conceive a line drawn from the sun, through the back of his head, to the observer's eye and prolonged beyond it. Conceive a second line drawn from the shower to the eye, and enclosing an angle of 421/2 deg. with the line drawn from the sun. Along this second line a rain-drop when struck by a sunbeam will send red light to the eye. Every other drop similarly situated, that is, every drop at an angular distance of 421/2 deg. from the line through the sun and eye, will do the same. A circular band of red light is thus formed, which may be regarded as the boundary of the base of a cone, with its apex at the observer's eye. Because of the magnitude of the sun, the angular width of this red band will be half a degree. From the eye of the observer conceive another line to be drawn, enclosing an angle, not of 421/2 deg., but of 401/2 deg., with the prolongation of the line drawn from the sun. Along this other line a rain-drop, at its remote end, when struck by a solar beam, will send violet light to the eye. All drops at the same angular distance will do the same, and we shall therefore obtain a band of violet light of the same width as the red band. These two bands constitute the limiting colours of the rainbow, and between them the bands corresponding to the other colours lie. Thus the line drawn from the eye to the _middle_ of the bow, and the line drawn through the eye to the sun, always enclose an angle of about 41 deg.. To account for this was the great difficulty, which remained unsolved up to the time of Descartes. Taking a pen in hand, and calculating by means of Snell's law the track of every ray through a raindrop, Descartes found that, at one particular angle, the rays, reflected at its back, emerged from the drop _almost parallel to each other_. They were thus enabled to preserve their intensity through long atmospheric distances. At all other angles the rays quitted the drop _divergent_, and through this divergence became so enfeebled as to be practically lost to the eye. The angle of parallelism here referred to was that of forty-one degrees, which observation had proved to be invariably associated with the rainbow. From what has been said, it is clear that two observers standing beside each other, or one above the other, nay, that even the two eyes of the same observer, do not see exactly the same bow. The position of
PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42  
43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   >>   >|  



Top keywords:

observer

 

angular

 

violet

 

Descartes

 

colours

 

rainbow

 
Conceive
 

enclosing

 

struck

 
distance

preserve

 

enabled

 

atmospheric

 

calculating

 
intensity
 

position

 
raindrop
 

parallel

 

distances

 

emerged


reflected
 

angles

 

proved

 

invariably

 

degrees

 
observation
 

referred

 

divergence

 

divergent

 

quitted


enfeebled

 

parallelism

 

observers

 

standing

 

practically

 
obtain
 

Because

 
magnitude
 

boundary

 

degree


conceive

 
remote
 

prolongation

 

regarded

 

prolonged

 

facing

 
shower
 

sunbeam

 
circular
 
formed