FREE BOOKS

Author's List




PREV.   NEXT  
|<   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266  
267   268   269   270   271   272   273   274   275   276   >>  
A more complete exposition would begin with the rotating earth, and would superpose the attraction of the moon as a disturbing cause, treating it as a problem in planetary perturbation, the ocean being a sort of satellite of the earth. This treatment, introducing inertia but ignoring friction and land obstruction, gives low water in the line of pull, and high water at right angles, or where the pull is zero; in the same sort of way as a pendulum bob is highest where most force is pulling it down, and lowest where no force is acting on it. For a clear treatment of the tides as due to the perturbing forces of sun and moon, see a little book by Mr. T.K. Abbott of Trinity College, Dublin. (Longman.) [Illustration: FIG. 113.--Maps showing how comparatively free from land obstruction the ocean in the Southern Hemisphere is.] If the moon were the only body that swung the earth round, this is all that need be said in an elementary treatment; but it is not the only one. The moon swings the earth round once a month, the sun swings it round once a year. The circle of swing is bigger, but the speed is so much slower that the protuberance produced is only one-third of that caused by the monthly whirl; _i.e._ the simple solar tide in the open sea, without taking momentum into account, is but a little more than a foot high, while the simple lunar tide is about three feet. When the two agree, we get a spring tide of four feet; when they oppose each other, we get a neap tide of only two feet. They assist each other at full moon and at new moon. At half-moon they oppose each other. So we have spring tides regularly once a fortnight, with neap tides in between. [Illustration: FIG. 114.--Spring and neap tides.] Fig. 114 gives the customary diagrams to illustrate these simple things. You see that when the moon and sun act at right angles (_i.e._ at every half-moon), the high tides of one coincide with the low tides of the other; and so, as a place is carried round by the earth's rotation, it always finds either solar or else lunar high water, and only experiences the difference of their two effects. Whereas, when the sun and moon act in the same line (as they do at new and full moon), their high and low tides coincide, and a place feels their effects added together. The tide then rises extra high and falls extra low. [Illustration: FIG. 115.--Tidal clock. The position of the di
PREV.   NEXT  
|<   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266  
267   268   269   270   271   272   273   274   275   276   >>  



Top keywords:

simple

 
treatment
 

Illustration

 
coincide
 
spring
 

oppose

 

effects

 

obstruction

 
swings
 
angles

momentum
 

taking

 

account

 

things

 

Whereas

 

difference

 

experiences

 

position

 
rotation
 
fortnight

Spring

 

regularly

 

assist

 

customary

 

carried

 

diagrams

 
illustrate
 
pulling
 

lowest

 
highest

pendulum

 
acting
 

forces

 
perturbing
 
friction
 

ignoring

 
superpose
 

attraction

 

disturbing

 
rotating

complete

 

exposition

 

treating

 

introducing

 

inertia

 

satellite

 
problem
 

planetary

 

perturbation

 

circle