FREE BOOKS

Author's List




PREV.   NEXT  
|<   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201  
202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   >>   >|  
cts of light at the present time are conflicting and they do not rest upon an established scientific foundation. Furthermore some of them are at variance with the possibilities and an unprejudiced observer must conclude that much systematic work must be done before order may arise from the present chaos. This does not mean that many of the effects are not real, for radiant energy is known to cause certain effects, and viewing the subject broadly it appears that light is already serving humanity in this field and that its future is promising. The present lack of definite data pertaining to the effects of radiation is due to the failure of most investigators to determine accurately the quantities and wave-lengths of the rays involved. For example, it is easy to err by attributing an effect to visible rays when the effect may be caused by accompanying invisible rays. Furthermore, it may be possible that certain rays counteract or aid the effective rays without being effective alone. In other words, the physical measurements have been neglected notwithstanding the fact that they are generally more easily made than the determinations of curative effects or of germicidal action. Radiant energy of all kinds and wave-lengths has played a part in therapeutics, so it is of interest to indicate them according to wave-length or frequency. These groups vary in range of wave-length, but the actual intervals are not particularly of interest here. Beginning with radiant energy of highest frequencies of vibration and shortest wave-lengths, the following groups and subgroups are given in their order of increasing wave-length: Roentgen or X-rays, which pass readily through many substances opaque to ordinary light-rays. Ultra-violet rays, which are divided empirically into three groups, designated as "extreme," "middle," and "near" in accordance with their location in respect to the visible region. Visible rays producing various sensations of color, such as violet, blue, green, yellow, orange, and red. Infra-red or the invisible rays bordering on the red rays. An unknown, unmeasured, or unfilled region between the infra-red and the "electric" waves. Electric waves, which include a class of electromagnetic radiant energy of long wave-length. Of these the Herzian waves are of the shortest wave-length and these are followed by "wireless" waves. Electric
PREV.   NEXT  
|<   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201  
202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   >>   >|  



Top keywords:
length
 

effects

 

energy

 

lengths

 

groups

 

radiant

 

present

 

visible

 

effective

 
interest

invisible

 
effect
 

region

 
Electric
 

violet

 

Furthermore

 
shortest
 

subgroups

 

Roentgen

 
increasing

vibration
 

played

 
frequency
 

actual

 

Beginning

 
highest
 

therapeutics

 

intervals

 

frequencies

 

location


unknown
 
unmeasured
 

unfilled

 

bordering

 

yellow

 

orange

 

Herzian

 

wireless

 
electromagnetic
 

electric


include

 
empirically
 

designated

 

divided

 

substances

 
opaque
 

ordinary

 

extreme

 

middle

 

producing