FREE BOOKS

Author's List




PREV.   NEXT  
|<   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217  
218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   >>   >|  
ium produces a canary yellow in soda and potash-lime glasses, which fluoresce, and these glasses may be used in the detection of ultra-violet rays. The color is topaz in lead glass. Both sulphur and carbon are used in the manufacture of pale yellow glasses. Antimony has a weak effect, but in the presence of much lead it is used for making opaque or translucent yellow glasses. Chromium produces a green color, which is reddish in lead glass, and yellowish in soda, and potash-lime glasses. Iron imparts a green or bluish green color to glass. It is usually present as an impurity in the ingredients of glass and its color is neutralized by adding some manganese, which produces a purple color complementary to the bluish green. This accounts for the manganese purple which develops from colorless glass exposed to ultra-violet rays. Iron is used in "bottle green" glass. Its color is greenish blue in potash-lime glass, bluish green in soda-lime glass, and yellowish green in lead glass. Cobalt is widely used in the production of blue glasses. It produces a violet-blue in potash-lime and soda-lime glasses and a blue in lead glasses. It appears blue, but it transmits deep red rays. For this reason when used in conjunction with a deep red glass, a filter for only the deepest red rays is obtained. Nickel produces an amethyst color in potash-lime glass, a reddish brown in soda-lime glass, and a purple in lead glass. Manganese is used largely as a "decolorizing" agent in counteracting the blue-green of iron. It produces an amethyst color in potash-lime glass and reddish violet in soda-lime and lead glasses. These are the principal coloring ingredients used in the manufacture of colored glass. The staining of glass is done under lower temperatures, so that a greater variety of chemical compounds may be used. The resulting colors of metals and metallic oxides dissolved in glass depend not only upon the nature of the metal used, but also partly upon the stage of oxidation, the composition of the glass and even upon the temperature of the fusion. In developing a glass filter the effects of the various coloring elements are determined spectrally and the various elements are varied in proper proportions until the glass of desired spectral transmission is obtained. It is seen that the coloring elements are limited and the combination of these is further limited by chemical considerations. In combining various colored glasses or various
PREV.   NEXT  
|<   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217  
218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   >>   >|  



Top keywords:

glasses

 

produces

 

potash

 
violet
 

purple

 
bluish
 

elements

 

reddish

 

yellow

 

coloring


obtained

 

amethyst

 

colored

 

manganese

 

ingredients

 
chemical
 

filter

 

yellowish

 
limited
 

manufacture


greater

 

combination

 

variety

 

colors

 

transmission

 

resulting

 

compounds

 
combining
 

principal

 

considerations


metals
 

staining

 
temperatures
 

oxides

 

proper

 

varied

 
proportions
 

composition

 

temperature

 

fusion


developing

 

effects

 

determined

 

spectrally

 
oxidation
 

spectral

 

depend

 
dissolved
 

counteracting

 

nature