FREE BOOKS

Author's List




PREV.   NEXT  
|<   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99  
100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  
orward, raises T' by means of a roller bearing U, and when the handle is raised the total weight of the cylinders is supported on the platforms. The balance is attached to an upright I-beam which is anchored to the floor and ceiling of the calorimeter laboratory. Two large turnbuckle eye-bolts give still greater rigidity at the bottom. The whole apparatus is inclosed in a glass case, shown in fig. 5. AUTOMATIC CONTROL OF OXYGEN SUPPLY. The use of the reduction-valve has made the automatic control of the oxygen supply much simpler than in the apparatus formerly used. The details of the connections somewhat schematically outlined are given in fig. 32, in which D is the oxygen cylinder, K the supporting band, A the reduction-valve, and J the tension-equalizer attached to one of the calorimeters. Having reduced the pressure to about 2 pounds by means of the reduction-valve, the supply of oxygen can be shut off by putting a pinch-cock on a rubber pipe leading from the reduction-valve to the calorimeters. Instead of using the ordinary screw pinch-cock, this connection is closed by a spring clamp. The spring E draws on the rod which is connected at L and pinches the rubber tube tightly. The tension at E can be released by an electro-magnet F, which when magnetized exercises a pull on the iron rod, extends the spring E, and simultaneously releases the pressure on the rubber tube at L. To make the control perfectly automatic, the apparatus shown on the top of the tension-equalizer J is employed. A wire ring, with a wire support, is caused to pass up through a bearing fastened to the clamp above J. As the air inside of the whole system becomes diminished in volume and the rubber cap J sinks, there is a point at which a metal loop dips into two mercury cups C and C', thus closing the circuit, which causes a current of electricity to pass through F. This releases the pressure at L, oxygen rushes in, and the rubber bag J becomes distended. As it is distended, it lifts the metal loop out of the cups, C and C', and the circuit is broken. There is, therefore, an alternate opening and closing of this circuit with a corresponding admission of oxygen. The exact position of the rubber diaphragm can be read when desired from a pointer on a graduated scale attached to a support holding the terminals of the electric wires. More frequently, however, when the volume is required, instead of filling the bag to a definite point, as shown by
PREV.   NEXT  
|<   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99  
100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  



Top keywords:

rubber

 

oxygen

 
reduction
 

attached

 

spring

 

pressure

 

apparatus

 

tension

 

circuit

 
calorimeters

supply

 
equalizer
 
control
 
automatic
 
volume
 

closing

 

distended

 

releases

 

support

 

bearing


diminished

 

weight

 

raised

 

roller

 

mercury

 

cylinders

 

handle

 

system

 
employed
 

perfectly


upright

 

caused

 

supported

 

fastened

 
platforms
 
balance
 

inside

 
current
 
holding
 

terminals


electric
 
graduated
 

desired

 

pointer

 

filling

 

definite

 

required

 

frequently

 

diaphragm

 

position