FREE BOOKS

Author's List




PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  
hought necessary. The total amount of water-vapor leaving the chamber is determined by noting the increase in weight of the first sulphuric-acid vessel in the absorber system. This vessel is weighed with a counterpoise and hence only the increment in weight is recorded. A slight correction may be necessary here, as frequently the absorber is considerably warmer at the end of the period than at the beginning and if weighed while warm there may be an error of 0.1 to 0.2 gram. If the absorbers are weighed at the same temperature at the beginning and end, this correction is avoided. The amount of carbon dioxide absorbed from the ventilating air-current is found by noting the changes in weight of the potash-lime can and the last sulphuric-acid vessel. As shown by the weights of this latter vessel, it is very rare that sufficient water is carried over from the potash-lime to the sulphuric acid to cause a perceptible change in temperature, and no temperature corrections are necessary. It may occasionally happen that the amount of carbon dioxide absorbed is actually somewhat less than the amount of water-vapor abstracted from the reagent by the dry air-current as it passes through the can. The conditions will then be such that there will be a loss in weight of the potash-lime can and a large gain in weight of the sulphuric-acid vessel. Obviously, the algebraic sum of these amounts will give the true weight of the carbon dioxide absorbed. The amount of oxygen admitted is approximately measured by noting the loss in weight of the oxygen cylinder. Since, however, in admitting the oxygen from the cylinder there is a simultaneous admission of a small amount of nitrogen, a correction is necessary. This correction can be computed either by the elaborate formulas described in the publication of Atwater and Benedict[24] or by the more abbreviated method of calculation which has been used very successfully in all short experiments in this laboratory. In either case it is necessary to know the approximate percentage of nitrogen in the oxygen. ANALYSIS OF OXYGEN. With the modified method of computation discussed in detail on page 88 it is seen that such exceedingly exact analyses of oxygen as were formerly made are unnecessary, and further calculation is consequently very simple if we know the percentage of nitrogen to within a fraction of 1 per cent. We have used a Haldane gas-analysis apparatus for analyzing the oxygen, altho
PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  



Top keywords:

weight

 

oxygen

 
amount
 

vessel

 

correction

 

sulphuric

 

carbon

 

dioxide

 

absorbed

 
potash

temperature

 
weighed
 
nitrogen
 
noting
 
absorber
 

calculation

 

cylinder

 

beginning

 

method

 

percentage


current

 

successfully

 

experiments

 

laboratory

 

publication

 

computed

 

elaborate

 

formulas

 
admission
 

simultaneous


admitting

 

abbreviated

 

Atwater

 

Benedict

 
fraction
 
simple
 

analyzing

 
apparatus
 
analysis
 

Haldane


unnecessary
 
computation
 

discussed

 

detail

 

modified

 

ANALYSIS

 

OXYGEN

 

measured

 

analyses

 

exceedingly