FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  
Force in this form has a definite mechanical measure, in the amount of work that it can perform. The simplest form of work is the raising of a weight. A man walking up-hill, or up-stairs, with a pound weight in his hand, to an elevation say of sixteen feet, performs a certain amount of work, over and above the lifting of his own body. If he carries the pound to a height of thirty-two feet, he does twice the work; if to a height of forty-eight feet, he does three times the work; if to sixty-four feet, he does four times the work, and so on. If, moreover, he carries up two pounds instead of one, other things being equal, he does twice the work; if three, four, or five pounds, he does three, four, or five times the work. In fact, it is plain that the work performed depends on two factors, the weight raised and the height to which it is raised. It is expressed by the product of these two factors. But a body may be caused to reach a certain elevation in opposition to the force of gravity, without being actually carried up. If a hodman, for example, wished to land a brick at an elevation of sixteen feet above the place where he stood, he would probably pitch it up to the bricklayer. He would thus impart, by a sudden effort, a velocity to the brick sufficient to raise it to the required height; the work accomplished by that effort being precisely the same as if he had slowly carried up the brick. The initial velocity to be imparted, in this case, is well known. To reach a height of sixteen feet, the brick must quit the man's hand with a velocity of thirty-two feet a second. It is needless to say, that a body starting with any velocity, would, if wholly unopposed or unaided, continue to move for ever with the same velocity. But when, as in the case before us, the body is thrown upwards, it moves in opposition to gravity, which incessantly retards its motion, and finally brings it to rest at an elevation of sixteen feet. If not here caught by the bricklayer, it would return to the hodman with an accelerated motion, and reach his hand with the precise velocity it possessed on quitting it. An important relation between velocity and work is here to be pointed out. Supposing the hodman competent to impart to the brick, at starting, a velocity of sixty-four feet a second, or twice its former velocity, would the amount of work performed be twice what it was in the first instance? No; it would be four times that qua
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  



Top keywords:

velocity

 

height

 

elevation

 

sixteen

 

amount

 
hodman
 

weight

 

starting

 

pounds

 

factors


carried
 

opposition

 

motion

 

performed

 

raised

 

impart

 

effort

 
carries
 

bricklayer

 

thirty


gravity

 

initial

 

unaided

 

wholly

 

imparted

 

unopposed

 
continue
 
needless
 

brings

 
important

instance

 

possessed

 

quitting

 
relation
 

competent

 

Supposing

 

pointed

 

precise

 
accelerated
 

incessantly


upwards

 

thrown

 

retards

 

finally

 

return

 

slowly

 
caught
 
caused
 

lifting

 

things