FREE BOOKS

Author's List




PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   >>   >|  
e._ the primary and secondary of a binary system are each resolvable into two, forming two pairs, each pair being in mutual revolution, while they both gravitate round their common centre of gravity. Epsilon Lyrae, which has been described as a double double, is an example of a quadruple system, and Nu Scorpii is of a similar construction, but more beautiful because its components are in closer proximity to each other. Close upon twenty of those double double systems have been discovered in different parts of the heavens. One of the most interesting of quadruple systems is Theta Orionis, which is situated in the Great Nebula, by which it is surrounded. This star, when observed with a telescope of low power, can be at once resolved into four separate lucent points, so arranged as to form a quadrilateral figure or trapezium. They are of the fifth, sixth, seventh, and eighth magnitudes, and described as pale white, garnet, faint lilac, and red. Though they have been under careful observation for upwards of two centuries, no perceptible motion has been perceived as occurring among them, nor has there been any change in their relative positions--they appear to be perfectly motionless; but we must not infer from this that no physical bond of union exists between them, for they are situated at an amazing distance from the Earth. Ascending higher in the scale of celestial architecture, we have multiple stars forming systems still more elaborate and complex, into the structure of which numerous stars enter, and they, as they increase in number, gradually merge into star-clusters. If we assume that around each of the components of a multiple star there circles a retinue of planetary worlds, we are confronted with a most perplexing problem as to how the dynamical stability of a system so different from, and so vastly more complicated than, that of our solar system is maintained--where, as it were, suns and planets intermingle--how numerous circling orbs can accomplish their revolutions without being swayed and deflected from their paths by the gravitational attraction of adjacent members of the same system. Perplexing though the arrangement of such a scheme may be to our conception, yet, each orb has been weighed, poised, and adjusted by Infinite Wisdom, to perform its intricate motions in synchronous harmony with other members of the system--all moving in unison like the parts of a complicated piece of mechanism, and maintain
PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   >>   >|  



Top keywords:

system

 

double

 

systems

 

numerous

 

members

 

components

 

complicated

 

situated

 
forming
 

quadruple


multiple

 

confronted

 

perplexing

 

worlds

 

planetary

 

distance

 

retinue

 
problem
 

amazing

 

exists


physical
 

dynamical

 

stability

 

complex

 

elaborate

 

celestial

 

gradually

 

architecture

 

number

 

increase


higher

 

assume

 

structure

 
clusters
 

Ascending

 
circles
 

poised

 

adjusted

 

Infinite

 

Wisdom


weighed

 
scheme
 
conception
 
perform
 

intricate

 

mechanism

 
maintain
 

unison

 

moving

 

motions