FREE BOOKS

Author's List




PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   >>  
. The first two columns cover the tones of the two octaves used in setting the temperament by our system. TABLE OF VIBRATIONS PER SECOND. C |128. |256. |512. |1024. | C[#] |135.61 |271.22 |542.44 |1084.89 | D |143.68 |287.35 |574.70 |1149.40 | D[#] |152.22 |304.44 |608.87 |1217.75 | E |161.27 |322.54 |645.08 |1290.16 | F |170.86 |341.72 |683.44 |1366.87 | F[#] |181.02 |362.04 |724.08 |1448.15 | G |191.78 |383.57 |767.13 |1534.27 | G[#] |203.19 |406.37 |812.75 |1625.50 | A |215.27 |430.54 |861.08 |1722.16 | A[#] |228.07 |456.14 |912.28 |1824.56 | B |241.63 |483.26 |966.53 |1933.06 | C |256. |512. |1024. |2048. | Much interesting and valuable exercise may be derived from the investigation of this table by figuring out what certain intervals would be if exact, and then comparing them with the figures shown in this tempered scale. To do this, select two notes and ascertain what interval the higher forms to the lower; then, by the fraction in the table below corresponding to that interval, multiply the vibration number of the lower note. EXAMPLE.--Say we select the first C, 128, and the G in the same column. We know this to be an interval of a perfect fifth. Referring to the table below, we find that the vibration of the fifth is 3/2 of, or 3/2 times, that of its fundamental; so we simply multiply this fraction by the vibration number of C, which is 128, and this gives 192 as the exact fifth. Now, on referring to the above table of equal temperament, we find this G quoted a little less (flatter), viz., 191.78. To find a fourth from any note, multiply its number by 4/3, a major third, by 5/4, and so on as per table below. TABLE SHOWING RELATIVE VIBRATION OF INTERVALS BY IMPROPER FRACTIONS. The relation of the Octave to a Fundamental is expressed by 2/1 " " " Fifth to a " " 3/2 " " " Fourth to a " " 4/3 " " " Major Third to a " " 5/4 " " " Minor Third to a " " 6/5 " " " Major Second to a " " 9/8 " " " Major Sixth to a " " 5/3 " " " Minor Sixth to a " " 8/5 " " " Major Seventh to a " " 15/8 " "
PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   >>  



Top keywords:

vibration

 

number

 

multiply

 

interval

 

fraction

 
select
 

temperament

 
column
 

EXAMPLE


ascertain

 
higher
 

tempered

 
comparing
 

figures

 

referring

 
IMPROPER
 

FRACTIONS

 

relation


INTERVALS

 

VIBRATION

 

SHOWING

 
RELATIVE
 

Octave

 

Fundamental

 

Second

 

Seventh

 

Fourth


expressed
 

simply

 

fundamental

 

Referring

 

fourth

 

flatter

 

quoted

 

perfect

 
system

VIBRATIONS

 
setting
 
columns
 
octaves
 

SECOND

 

interesting

 

intervals

 

figuring

 
investigation

valuable

 
exercise
 

derived