FREE BOOKS

Author's List




PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>  
15'. Then the cubes of the perpendiculars let fall from the eye, on the plane of the bases of the various visual cones, are proportional to the solid contents of the cones themselves, or, as the stars are supposed equally scattered within all the cones, the cube roots of the numbers of stars in each of the fields express the relative lengths of the perpendiculars. A _section_ of the sidereal system along any great circle can be constructed from the data furnished by the gauges in the following way: The solar system is within the mass of stars. From this point lines are drawn along the different directions in which the gauging telescope was pointed. On these lines are laid off lengths proportional to the cube roots of the number of stars in each gauge. The irregular line joining the terminal points will be approximately the bounding curve of the stellar system in the great circle chosen. Within this line the space is nearly uniformly filled with stars. Without it is empty space. A similar section can be constructed in any other great circle, and a combination of all such would give a representation of the shape of our stellar system. The more numerous and careful the observations, the more elaborate the representation, and the 863 gauges of HERSCHEL are sufficient to mark out with great precision the main features of the Milky Way, and even to indicate some of its chief irregularities. On the fundamental assumption of HERSCHEL (equable distribution), no other conclusion can be drawn from his statistics but the one laid down by him. This assumption he subsequently modified in some degree, and was led to regard his gauges as indicating not so much the _depth of the system_ in any direction, as the _clustering power or tendency_ of the stars in those special regions. It is clear that if in any given part of the sky, where, on the average, there are ten stars (say) to a field, we should find a certain small portion having 100 or more to a field, then, on HERSCHEL'S first hypothesis, rigorously interpreted, it would be necessary to suppose a spike-shaped protuberance directed from the earth, in order to explain the increased number of stars. If many such places could be found, then the probability is great that this explanation is wrong. We should more rationally suppose some real inequality of star distribution here. It is, in fact, in just such details that the method of HERSCHEL breaks down, and a careful examination
PREV.   NEXT  
|<   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107  
108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>  



Top keywords:

system

 
HERSCHEL
 

gauges

 
circle
 

representation

 

perpendiculars

 
careful
 

suppose

 

stellar

 

number


lengths

 
assumption
 

section

 

proportional

 

constructed

 

distribution

 

indicating

 
subsequently
 

regard

 

degree


tendency

 

modified

 

special

 

clustering

 

direction

 
regions
 
rigorously
 

probability

 
explanation
 

increased


places
 

rationally

 

details

 

method

 
breaks
 

examination

 

inequality

 

explain

 
portion
 

shaped


protuberance

 
directed
 

hypothesis

 

interpreted

 

average

 
sidereal
 

furnished

 
directions
 

irregular

 

pointed