FREE BOOKS

Author's List




PREV.   NEXT  
|<   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112  
113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>  
e smallest telescope of the set showed a large number of stars; these must, then, be _twice_ as far from us, on the average, as the stars just visible to the naked eye. But first-magnitude stars, like _Sirius_, _Procyon_, _Arcturus_, etc., become just visible to the eye if removed to twelve times their present distance. Hence the stars seen in this first telescope of the set were between twelve and twenty-four times as far from us as _Arcturus_, for example. "At least," as HERSCHEL says, "we are certain that if stars of the size and lustre of _Sirius_, _Arcturus_, etc., were removed into the profundity of space I have mentioned, they would then appear like the stars which I saw." With the next telescope, which collected nine times more light than the eye, and brought into view objects three times more distant, other and new stars appeared, which were then (3 x 12) thirty-six times farther from us than _Arcturus_. In the same way, the seven-foot reflector showed stars 204 times, the ten-foot 344 times, the twenty-foot 900 times farther from us than the average first-magnitude star. As the light from such a star requires three years to reach us, the light from the faintest stars seen by the twenty-foot would require 2,700 years (3 x 900). But HERSCHEL was now (1817) convinced that the twenty-foot telescope could not penetrate to the boundaries of the Milky Way; the faintest stars of the Galaxy must then be farther from us even than nine hundred times the distance of _Arcturus_, and their light must be at least 3,000 years old when it reaches us. There is no escaping a certain part of the consequences established by HERSCHEL. It is indeed true that unless a particular star is of the same intrinsic brightness as our largest stars, this reasoning does not apply to it; in just so far as the average star is less bright than the average brightness of our largest stars, will the numbers which HERSCHEL obtained be diminished. But for every star of which his hypothesis is true, we may assert that his conclusions are true, and no one can deny, with any show of reason, that, on the whole, his suppositions must be valid. On the whole, the stars which we call faint are farther from us than the brighter ones; and, on the whole, the brilliancy of our brightest and nearest stars is not very far from the brilliancy of the average star in space. We cannot yet define the word _very_ by a numerical ratio. The _method_ struck out by H
PREV.   NEXT  
|<   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112  
113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   >>  



Top keywords:

Arcturus

 
average
 

farther

 
twenty
 

HERSCHEL

 

telescope

 
faintest
 

largest

 

brightness

 

twelve


removed

 
showed
 

magnitude

 

visible

 

distance

 

Sirius

 

brilliancy

 
numerical
 

reasoning

 

escaping


consequences

 

reaches

 

established

 

intrinsic

 

method

 
bright
 
struck
 

define

 
suppositions
 

reason


brightest
 

brighter

 

nearest

 

hypothesis

 
diminished
 

obtained

 

numbers

 

assert

 
conclusions
 

mentioned


lustre

 
profundity
 

distant

 

objects

 

collected

 
brought
 

number

 
smallest
 

Procyon

 

present