FREE BOOKS

Author's List




PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  
s of higher animals--muscular, connective, glandular, etc. And by tissues we mean groups of cells modified in form and structure for the performance of a special work or function. The protozoa developed the cell for all time to come, the coelenterata developed the tissues which still compose our bodies. But they had them mainly in a diffuse form. A sort of digestive and reproductive system they did possess. But the work of arranging these tissues and condensing them into compact organs was to be done by the next higher group, the worms. Let us now take a glance at certain stages of embryonic development which correspond to these earliest ancestral forms. We should expect some such correspondence from the fact already stated that the embryonic development of the individual is a brief recapitulation of the ancestral development of the species or larger group. The egg of the lowest vertebrate, amphioxus, shows these changes in a simple and apparently primitive form. [Illustration: 3. IMMATURE EGG-SHELL FROM OVARY OF ECHINODERM. HATSCHEK, FROM HERTWIG.] The fertilized egg of any animal consists of a single cell, a little mass of protoplasm containing a nucleus and surrounded by a structureless membrane. The egg is globular. The nucleus undergoes certain very peculiar, still but little understood, changes and divides into two. The protoplasm also soon divides into two masses clustering each around its own nucleus. The plane of division will be marked around the outside by a circular furrow, but the cells will still remain united by a large part of the membrane which bounds their adjacent, newly formed, internal faces. Let us suppose that the egg lay so that the first plane of division was vertical and extending north and south. Each cell or half of the egg will divide into two precisely as before. The new plane of division will be vertical, but extending east and west. Each plane passes through the centre of the egg, and the four cells are of the same form and size, like much-rounded quarters of an orange. The third plane will lie horizontal or equatorial, and will divide each of these quarters into an upper and lower octant. The cells keep on dividing rapidly, the eight form sixteen, then thirty-two, etc. The sharp angle by which the cells met at the centre has become rounded off, and has left a little space, the segmentation cavity, filled with fluid in the middle of the embryo. The cells continue to press or
PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  



Top keywords:

tissues

 

division

 
development
 

nucleus

 
embryonic
 

ancestral

 

divides

 

centre

 

divide

 

rounded


quarters

 

extending

 

membrane

 

protoplasm

 

vertical

 

developed

 

higher

 

structure

 

suppose

 

passes


glandular

 

precisely

 

internal

 

remain

 
united
 
furrow
 

circular

 

marked

 

modified

 

formed


adjacent

 

bounds

 

groups

 

sixteen

 
thirty
 
middle
 

embryo

 

continue

 

segmentation

 
cavity

filled
 

rapidly

 
muscular
 
animals
 
orange
 
clustering
 

dividing

 

octant

 

horizontal

 
equatorial