FREE BOOKS

Author's List




PREV.   NEXT  
|<   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97  
98   99   100   101   >>  
sealed off. The principal advantage of this construction was that it allowed of reaching extremely high vacua, and, at the same time use a large bulb. It was found, in the course of experiences with bulbs such as illustrated in Fig. 29, that it was well to make the stem s near the seal at e very thick, and the leading-in wire w thin, as it occurred sometimes that the stem at e was heated and the bulb was cracked. Often the outer globe L was exhausted only just enough to allow the discharge to pass through, and the space between the bulbs appeared crimson, producing a curious effect. In some cases, when the exhaustion in globe L was very low, and the air good conducting, it was found necessary, in order to bring the button m to high incandescence, to place, preferably on the upper part of the neck of the globe, a tinfoil coating which was connected to an insulated body, to the ground, or to the other terminal of the coil, as the highly conducting air weakened the effect somewhat, probably by being acted upon inductively from the wire w, where it entered the bulb at e. Another difficulty--which, however, is always present when the refractory button is mounted in a very small bulb--existed in the construction illustrated in Fig. 29, namely, the vacuum in the bulb b would be impaired in a comparatively short time. [Illustration: FIG. 29.--LAMP WITH INDEPENDENT AUXILIARY BULB.] The chief idea in the two last described constructions was to confine the heat to the central portion of the globe by preventing the exchange of air. An advantage is secured, but owing to the heating of the inside bulb and slow evaporation of the glass the vacuum is hard to maintain, even if the construction illustrated in Fig. 28 be chosen, in which both bulbs communicate. But by far the better way--the ideal way--would be to reach sufficiently high frequencies. The higher the frequency the slower would be the exchange of the air, and I think that a frequency may be reached at which there would be no exchange whatever of the air molecules around the terminal. We would then produce a flame in which there would be no carrying away of material, and a queer flame it would be, for it would be rigid! With such high frequencies the inertia of the particles would come into play. As the brush, or flame, would gain rigidity in virtue of the inertia of the particles, the exchange of the latter would be prevented. This would necessarily occur, for, the nu
PREV.   NEXT  
|<   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97  
98   99   100   101   >>  



Top keywords:

exchange

 
illustrated
 
construction
 

vacuum

 
effect
 
frequency
 
terminal
 

frequencies

 

particles

 

button


conducting
 

advantage

 

inertia

 

maintain

 
evaporation
 
inside
 

secured

 

heating

 

INDEPENDENT

 
Illustration

impaired
 

comparatively

 

AUXILIARY

 

confine

 
central
 

portion

 

constructions

 
preventing
 

carrying

 
material

necessarily
 

prevented

 

rigidity

 

virtue

 

produce

 
communicate
 

chosen

 

sufficiently

 

higher

 
molecules

reached

 

slower

 

weakened

 

exhausted

 
occurred
 

heated

 

cracked

 
discharge
 

crimson

 

producing