FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
l bulbs which are alike, only one is exhausted to a low and the other to a very high degree. When connected to the coil, the filament in the former glows uniformly throughout all its length; whereas in the latter, that portion of the filament which is in the centre of the bulb glows far more intensely than the rest. A curious point is that the phenomenon occurs even if two filaments are mounted in a bulb, each being connected to one terminal of the coil, and, what is still more curious, if they be very near together, provided the vacuum be very high. I noted in experiments with such bulbs that the filaments would give way usually at a certain point, and in the first trials I attributed it to a defect in the carbon. But when the phenomenon occurred many times in succession I recognized its real cause. In order to bring a refractory body inclosed in a bulb to incandescence, it is desirable, on account of economy, that all the energy supplied to the bulb from the source should reach without loss the body to be heated; from there, and from nowhere else, it should be radiated. It is, of course, out of the question to reach this theoretical result, but it is possible by a proper construction of the illuminating device to approximate it more or less. For many reasons, the refractory body is placed in the centre of the bulb, and it is usually supported on a glass stem containing the leading-in wire. As the potential of this wire is alternated, the rarefied gas surrounding the stem is acted upon inductively, and the glass stem is violently bombarded and heated. In this manner by far the greater portion of the energy supplied to the bulb--especially when exceedingly high frequencies are used--may be lost for the purpose contemplated. To obviate this loss, or at least to reduce it to a minimum, I usually screen the rarefied gas surrounding the stem from the inductive action of the leading-in wire by providing the stem with a tube or coating of conducting material. It seems beyond doubt that the best among metals to employ for this purpose is aluminium, on account of its many remarkable properties. Its only fault is that it is easily fusible, and, therefore, its distance from the incandescing body should be properly estimated. Usually, a thin tube, of a diameter somewhat smaller than that of the glass stem, is made of the finest aluminium sheet, and slipped on the stem. The tube is conveniently prepared by wrapping around a rod
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:

aluminium

 
refractory
 

purpose

 
supplied
 

surrounding

 

rarefied

 
leading
 

heated

 

energy

 

account


filaments

 
filament
 

phenomenon

 

connected

 

curious

 

centre

 

portion

 
greater
 

slipped

 

frequencies


exceedingly

 

finest

 

wrapping

 

potential

 

supported

 
alternated
 
prepared
 

violently

 
bombarded
 

inductively


conveniently
 

manner

 

metals

 

estimated

 
employ
 

Usually

 

remarkable

 

properties

 
fusible
 

distance


easily

 
properly
 

reduce

 

minimum

 

obviate

 
incandescing
 

contemplated

 
diameter
 

screen

 

coating