FREE BOOKS

Author's List




PREV.   NEXT  
|<   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311  
312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   >>   >|  
s close allies insect agency is absolutely required; but in one of these, the fly-orchis, comparatively very little seed is produced, and self-fertilisation would therefore be advantageous to it. When garden-peas were artificially cross-fertilised by Mr. Darwin, it seemed to do them no good, as the seeds from these crosses produced less vigorous plants than seed from those which were self-fertilised; a fact directly opposed to what usually occurs in cross-fertilised plants. 5. As opposed to the theory that there is any absolute need for cross-fertilisation, it has been urged by Mr. Henslow and others that many self-fertilised plants are exceptionally vigorous, such as groundsel, chickweed, sow-thistle, buttercups, and other common weeds; while most plants of world-wide distribution are self-fertilised, and these have proved themselves to be best fitted to survive in the battle of life. More than fifty species of common British plants are very widely distributed, and all are habitually self-fertilised.[154] That self-fertilisation has some great advantage is shown by the fact that it is usually the species which have the smallest and least conspicuous flowers which have spread widely, while the large and showy flowered species of the same genera or families, which require insects to cross-fertilise them, have a much more limited distribution. 6. It is now believed by some botanists that many inconspicuous and imperfect flowers, including those that are wind-fertilised, such as plantains, nettles, sedges, and grasses, do not represent primitive or undeveloped forms, but are degradations from more perfect flowers which were once adapted to insect fertilisation. In almost every order we find some plants which have become thus reduced or degraded for wind or self-fertilisation, as Poterium and Sanguisorba among the Rosaceae; while this has certainly been the case in the cleistogamic flowers. In most of the above-mentioned plants there are distinct rudiments of petals or other floral organs, and as the chief use of these is to attract insects, they could hardly have existed in primitive flowers.[155] We know, moreover, that when the petals cease to be required for the attraction of insects, they rapidly diminish in size, lose their bright colour or almost wholly disappear.[156] _Difficulties and Contradictions._ The very bare summary that has now been given of the main facts relating to the fertilisation of flowers,
PREV.   NEXT  
|<   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311  
312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   >>   >|  



Top keywords:

plants

 

fertilised

 

flowers

 

fertilisation

 
insects
 

species

 

opposed

 

primitive

 
petals
 

common


distribution
 
widely
 

produced

 

insect

 

required

 

vigorous

 

cleistogamic

 

reduced

 

Poterium

 

Rosaceae


Sanguisorba
 

degraded

 

perfect

 

nettles

 

sedges

 

grasses

 
plantains
 
absolutely
 

inconspicuous

 
imperfect

including

 

represent

 
adapted
 

degradations

 

agency

 
undeveloped
 
allies
 

colour

 

wholly

 

disappear


bright

 

diminish

 

Difficulties

 
relating
 

summary

 
Contradictions
 

rapidly

 

attraction

 

attract

 
organs