FREE BOOKS

Author's List




PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  
te rule, but that the inheritance of each pair was absolutely independent of the other. Thus, for example, when a tall plant bearing coloured flowers was crossed with a dwarf plant {25} bearing white flowers the resulting hybrid was a tall plant with coloured flowers. For coloured flowers are dominant to white, and tallness is dominant to dwarfness. In the succeeding generation there are plants with coloured flowers and plants with white flowers in the proportion of 3 : 1, and at the same time tall plants and dwarf plants in the same proportion. Hence the chances that a tall plant will have coloured flowers are three times as great as its chance of having white flowers. And this is also true for the dwarf plants. As the result of this cross, therefore, we should expect an F_2 generation consisting of four classes, viz. coloured talls, white talls, coloured dwarfs, and white dwarfs, and we should further expect these four forms to appear in the ratio of 9 coloured talls, 3 white talls, 3 coloured dwarfs, and 1 white dwarf. For this is the only ratio which satisfies the conditions that the talls should be to the dwarfs as 3 : 1, and at the same time the coloured should be to the whites as 3 : 1. And these are the proportions that Mendel found to obtain actually in his experiments. Put in a more general form, it may be stated that when two individuals are crossed which differ in two pairs of differentiating characters the hybrids (F_1) are all of the same form, exhibiting the dominant character of each of the two pairs, while the F_2 generation produced by such hybrids consists on the average of 9 showing both dominants, 3 showing one dominant and one recessive, {26} 3 showing the other dominant and the other recessive, and 1 showing both recessive characters. And, as Mendel pointed out, the principle may be extended indefinitely. If, for example, the parents differ in three pair of characters A, B, and C, respectively dominant to a, b, and c, the F_1 individuals will be all of the form ABC, while the F_2 generation will consists of 27 ABC, 9 ABc, 9 AbC, 9 aBC, 3 Abc, 3 aBc, 3 abC, and 1 abc. When individuals differing in a number of alternative characters are crossed together, the hybrid generation, provided that the original parents were of pure strains, consists of plants of the same form; but when these are bred from a redistribution of the various characters occurs. That redistribution follows the same definite rule for
PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  



Top keywords:
coloured
 

flowers

 
dominant
 

plants

 
characters
 
generation
 
dwarfs
 

showing

 

individuals

 

recessive


crossed

 

consists

 

expect

 

Mendel

 

differ

 

parents

 

bearing

 

redistribution

 

hybrid

 

proportion


hybrids

 

pointed

 

indefinitely

 

dominants

 
extended
 
principle
 

average

 

differing

 

original

 

provided


alternative

 
strains
 
definite
 

occurs

 

number

 

produced

 

chances

 

chance

 

result

 
independent

absolutely
 
inheritance
 

resulting

 

succeeding

 
dwarfness
 

tallness

 

experiments

 

obtain

 

general

 
exhibiting