FREE BOOKS

Author's List




PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  
t are to be found between one individual and another. Instead of looking at the individual as a whole, which is in some vague way endowed with an individuality marking it off from its fellows, we now regard it as an organism built up of definite characters superimposed on a basis beyond which for the moment our analysis will not take us. We have begun to realise that each individual has a definite architecture, and that this architecture depends {136} primarily upon the number and variety of the factors that existed in the two gametes that went to its building. Now most species exhibit considerable variation and exist in a number, often very large, of more or less well-defined varieties. How far can this great variety be explained in terms of a comparatively small number of factors if the number of possible forms depends upon the number of the factors which may be present or absent? In the simple case where the homozygous and heterozygous conditions are indistinguishable in appearance the number of possible forms is 2, raised to the power of the number of factors concerned. Thus where one factor is concerned there are only 2^1 = 2 possible forms, where ten factors are concerned there are 2^{10} = 1024 possible forms differing from one another in at most ten and at least one character. Where the factors interact upon one another this number will, of course, be considerably increased. If the heterozygous form is different in appearance from the homozygous form, there are three possible forms connected with each factor; for ten such factors the possible number of individuals would be 3^{10} = 59,049; for twenty such factors the possible number of different individuals would be 3^{20} = 3,486,784,401. The presence or absence of a comparatively small number of factors in a species carries with it the possibility of an enormous range of individual variation. But every one of these individuals has a perfectly definite constitution which can {137} be determined in each case by the ordinary methods of Mendelian analysis. For in every instance the variation depends upon the presence or absence of definite factors carried in by the gametes from whose union the individual results. And as these factors separate out cleanly in the gametes which the individual forms, such variations as depend upon them are transmitted strictly according to the Mendelian scheme. Provided that the constitution of the gametes is unchanged, the heredity of
PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   114   115   116   117   >>  



Top keywords:

number

 

factors

 

individual

 

definite

 

gametes

 

individuals

 

concerned

 
depends
 

variation

 

architecture


factor

 

species

 

variety

 

presence

 

absence

 

constitution

 
heterozygous
 

Mendelian

 

homozygous

 

appearance


comparatively

 

analysis

 

connected

 

interact

 

increased

 

considerably

 
heredity
 

differing

 

character

 

Provided


results

 

separate

 

instance

 

carried

 

cleanly

 

scheme

 

strictly

 

transmitted

 
variations
 

depend


methods
 
ordinary
 

twenty

 
unchanged
 

carries

 
perfectly
 

determined

 

possibility

 

enormous

 

superimposed