FREE BOOKS

Author's List




PREV.   NEXT  
|<   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157  
158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   >>   >|  
that pressure is, of course, greater at its bottom than at its centre or surface. It is therefore plain, that, inasmuch as the snow can be compressed by its own weight, it will be more compact at the bottom of such an accumulation than at its surface, this cause acting most powerfully at the upper part of a glacier, where the snow has not yet been transformed into a more solid icy mass. To these two agencies, the downward tendency and the vertical pressure, must be added the pressure from behind, which is most-effective where the mass is largest and the amount of motion in a given time greatest. In the glacier, the mass is, of course, largest in the centre, where the trough which holds it is deepest, and least on the margins, where the trough slopes upward and becomes more shallow. Consequently, the middle of a glacier always advances more rapidly than the sides. Were the slope of the ground over which it passes, combined with the pressure to which the mass is subjected, the whole secret of the onward progress of a glacier, it is evident that the rate of advance would be gradually accelerated, reaching its maximum at its lower extremity, and losing its impetus by degrees on the higher levels nearer the point where the descent begins. This, however, is not the case. The glacier of the Aar, for instance, is about ten miles in length; its rate of annual motion is greatest near the point of junction of the two great branches by which it is formed, diminishing farther down, and reaching a minimum at its lower extremity. But in the upper regions, near their origin, the progress of these branches is again gradually less. Let us see whether the next cause of displacement, the infiltration of moisture, may not in some measure explain this retardation, at least of the lower part of the glacier. This agency, like that of the compression of the snow by its own weight and the pressure from behind, is most effective where the accumulation is largest. In the centre, where the body of the mass is greatest, it will imbibe the most moisture. But here a modifying influence comes in, not sufficiently considered by the investigators of glacial structure. We have already seen that snow and ice at different degrees of compactness are not equally permeable to moisture. Above the line at which the annual winter snow melts, there is, of course, little moisture; but below that point, as soon as the temperature rises in summer sufficiently to melt
PREV.   NEXT  
|<   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157  
158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   >>   >|  



Top keywords:

glacier

 

pressure

 

moisture

 

greatest

 

largest

 

centre

 

motion

 
sufficiently
 

effective

 

degrees


extremity
 

branches

 

annual

 

reaching

 
gradually
 
trough
 

progress

 

surface

 

weight

 

bottom


accumulation

 

minimum

 

regions

 

origin

 
farther
 

summer

 

junction

 
length
 

diminishing

 

temperature


formed

 

compactness

 

instance

 

equally

 

permeable

 

considered

 

investigators

 

structure

 
glacial
 

influence


measure

 

explain

 

retardation

 

infiltration

 

agency

 

modifying

 

winter

 

imbibe

 
compression
 

displacement