FREE BOOKS

Author's List




PREV.   NEXT  
|<   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163  
164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   >>   >|  
e another deposit of snow takes place. Or suppose a fresh layer of light porous snow to have accumulated above one the surface of which has already been slightly glazed with frost; rain or dew, falling upon the upper one, will easily penetrate it; but when it reaches the lower one, it will be stopped by the film of ice already formed, and under a sufficiently low temperature, it will be frozen between the two. This result may be frequently noticed in winter, on the plains, where sudden changes of temperature take place. There is still a third cause, to which the same result may possibly be due, and to which I shall refer at greater length hereafter; but as it has not, like the preceding ones, been the subject of direct observation, it must be considered as hypothetical. The admirable experiments of Dr. Tyndall have shown that water may be generated in ice by pressure, and it is therefore possible that at a lower depth in the glacier, where the incumbent weight of the mass above is sufficient to produce water, the water thus accumulated may be frozen into ice-layers. But this depends so much upon the internal temperature of the glacier, about which we know little beyond a comparatively superficial depth, that it cannot at present afford a sound basis even for conjecture. There are, then, in the upper snow-fields three kinds of horizontal deposits: the beds of snow, the sheets of dust, and the layers of ice, alternating with each other. If, now, there were no modifying circumstances to change the outline and surface of the glacier,--if it moved on uninterruptedly through an open valley, the lower layers, forming the mass, getting by degrees the advance of the upper ones, our problem would be simple enough. We should then have a longitudinal mass of snow, inclosed between rocky walls, its surface crossed by straight transverse lines marking the annual additions to the glacier, as in the adjoining figure. [Illustration] But that mass of snow, before it reaches the outlet of the valley, is to be compressed, contorted, folded, rent in a thousand directions. The beds of snow, which in the upper ranges of the mountain were spread out over broad, open surfaces, are to be crowded into comparatively circumscribed valleys, to force and press themselves through narrow passes, alternately melting and freezing, till they pass from the condition of snow into that of ice, to undergo, in short, constant transformations, by which
PREV.   NEXT  
|<   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163  
164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   >>   >|  



Top keywords:

glacier

 

temperature

 

layers

 

surface

 

result

 

comparatively

 

frozen

 
accumulated
 

valley

 

reaches


simple
 

deposits

 

forming

 

advance

 
degrees
 
problem
 

horizontal

 

modifying

 

circumstances

 

fields


change

 

uninterruptedly

 

sheets

 

alternating

 
outline
 

outlet

 

narrow

 
passes
 

valleys

 

circumscribed


surfaces

 

crowded

 

alternately

 

melting

 

undergo

 

constant

 

transformations

 

condition

 
freezing
 

spread


transverse

 

marking

 

annual

 

additions

 

straight

 

crossed

 

inclosed

 

adjoining

 
figure
 

thousand