FREE BOOKS

Author's List




PREV.   NEXT  
|<   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426  
427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   >>   >|  
ith the fact, that minute particles descend with extreme slowness through water, the extent of their surface being very great in proportion to their weight, and the resistance of the fluid depending on the amount of surface. A precipitate of sulphate of baryta, for example, will sometimes require more than five or six hours to subside one inch;[467] while oxalate and phosphate of lime require nearly an hour to subside about an inch and a half and two inches respectively,[468] so exceedingly small are the particles of which these substances consist. When we recollect that the depth of the ocean is supposed frequently to exceed three miles, and that currents run through different parts of that ocean at the rate of four miles an hour, and when at the same time we consider that some fine mud carried away from the mouths of rivers and from sea-beaches, where there is a heavy surf, as well as the impalpable powder showered down by volcanoes, may subside at the rate of only an inch per hour, we shall be prepared to find examples of the transportation of sediment over areas of indefinite extent. It is not uncommon for the emery powder used in polishing glass to take more than an hour to sink one foot. Suppose mud composed of coarser particles to fall at the rate of two feet per hour, and these to be discharged into that part of the Gulf Stream which preserves a mean velocity of three miles an hour for a distance of two thousand miles; in twenty-eight days these particles will be carried 2016 miles, and will have fallen only to a depth of 224 fathoms. In this example, however, it is assumed that the current retains its superficial velocity at the depth of 224 fathoms, for which we have as yet no data, although we have seen that the motion of a current may continue at the depth of 100 fathoms. (See above, p. 28.) Experiments should be made to ascertain the rate of currents at considerable distances from the surface, and the time taken by the finest sediment to settle in sea-water of a given depth, and then the geologist may determine the area over which homogeneous mixtures may be simultaneously distributed in certain seas. CHAPTER XXII. IGNEOUS CAUSES. Changes of the inorganic world, _continued_--Igneous causes--Division of the subject--Distinct volcanic regions--Region of the Andes--System of volcanoes extending from the Aleutian isles to the Molucca and Sunda islands--Polynesian archipelago--
PREV.   NEXT  
|<   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426  
427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   >>   >|  



Top keywords:

particles

 

subside

 

fathoms

 
surface
 

current

 
velocity
 

sediment

 
currents
 

carried

 
powder

volcanoes

 
extent
 
require
 
retains
 

assumed

 
superficial
 

continue

 

motion

 

preserves

 
distance

Stream

 

discharged

 
thousand
 

twenty

 

minute

 

fallen

 

descend

 

Experiments

 

ascertain

 

subject


Distinct

 

volcanic

 

regions

 
Division
 

inorganic

 

continued

 
Igneous
 

Region

 
islands
 

Polynesian


archipelago

 
Molucca
 

System

 
extending
 

Aleutian

 

Changes

 
CAUSES
 

settle

 

geologist

 

finest