FREE BOOKS

Author's List




PREV.   NEXT  
|<   446   447   448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470  
471   472   473   474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   >>   >|  
is said, acquires confirmation from the fact, that the sheets of lava near the summit of Somma are so compact and crystalline, and of such breadth individually, as would not have been the case had they run down a steep slope. They must, therefore, have consolidated on a nearly level surface, and have been subsequently uplifted into their present inclined position. Unfortunately there are no sections of sufficient depth and continuity on the flanks of Somma, to reveal to us clearly the relations of the lava, scoriae, and associated dikes, forming the highest part of the mountain, with the marine tuffs observed on its declivity. Both may, perhaps, have been produced contemporaneously when Somma raised its head, like Stromboli, above the sea, its sides and base being then submerged. Such a state of things may be indicated by a fact noticed by Von Buch, namely, that the pumiceous beds of Naples, when they approach Somma, contain fragments of the peculiar leucitic lava proper to that mountain, which are not found in the same tuff at a greater distance.[535] Portions, therefore, of this lava were either thrown out by explosions, or torn off by the waves, during the deposition of the pumiceous strata beneath the sea. We have as yet but a scanty acquaintance with the laws which regulate the flow of lava beneath water, or the arrangement of scoriae and volcanic dust on the sides of a submarine cone. There can, however, be little doubt that showers of ejected matter may settle on a steep slope, and may include shells and the remains of aquatic animals, which flourish in the intervals between eruptions. Lava under the pressure of water would be less porous; but, as Dr. Daubeny suggests, it may retain its fluidity longer than in the open air; for the rapidity with which heated bodies are cooled by being plunged into water arises chiefly from the conversion of the lower portions of water into steam, which steam absorbing much heat, immediately ascends, and is reconverted into water. But under the pressure of a deep ocean, the heat of the lava would be carried off more slowly, and only by the circulation of ascending and descending currents of water, those portions nearest the source of heat becoming specifically light, and consequently displacing the water above. This kind of circulation would take place with much less rapidity than in the atmosphere, inasmuch as the expansion of water by equal increments of heat is less conside
PREV.   NEXT  
|<   446   447   448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470  
471   472   473   474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   >>   >|  



Top keywords:

pumiceous

 

beneath

 

scoriae

 
circulation
 

rapidity

 
mountain
 

pressure

 
portions
 

animals

 
intervals

porous

 
eruptions
 
flourish
 
arrangement
 

volcanic

 
submarine
 

regulate

 

scanty

 

acquaintance

 
settle

matter

 

include

 
shells
 

remains

 

ejected

 

showers

 

aquatic

 

plunged

 

source

 

nearest


specifically

 

currents

 

slowly

 
ascending
 

descending

 

displacing

 
expansion
 

increments

 
conside
 

atmosphere


carried

 
heated
 

bodies

 
longer
 

suggests

 

retain

 
fluidity
 

cooled

 

arises

 

reconverted