FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
ny of its chemical properties; for instance it burns very readily in oxygen, and consequently native silicon is unknown--it is always found in combination with one or more other elements. When it bums, each atom of silicon unites with two atoms of oxygen to form a compound known to chemists as silica (SiO2), and to the small boy as "sand" and "agate." Iron ore (an oxide of iron) contains more or less sand and dirt mixed in it when it is mined, and not only the iron oxide but also some of the silicon oxide is robbed of its oxygen by the smelting process. Pig iron--the product of the blast furnace--therefore contains from 1 to 3 per cent of silicon, and some silicon remains in the metal after it has been purified and converted into steel. However, silicon, as noted above, burns very readily in oxygen, and this property is of good use in steel making. At the end of the steel-making process the metal contains more or less oxygen, which must be removed. This is sometimes done (especially in the so-called acid process) by adding a small amount of silicon to the hot metal just before it leaves the furnace, and stirring it in. It thereupon abstracts oxygen from the metal wherever it finds it, changing to silica (SiO2) which rises and floats on the surface of the cleaned metal. Most of the silicon remaining in the metal is an excess over that which is required to remove the dangerous oxygen, and the final analysis of many steels show enough silicon (from 0.20 to 0.40) to make sure that this step in the manufacture has been properly done. MANGANESE is a metal much like iron. Its chemical symbol is Mn. It is somewhat more active than iron in many chemical changes--notably it has what is apparently a stronger attraction for oxygen and sulphur than has iron. Therefore the metal is used (especially in the so-called basic process) to free the molten steel of oxygen, acting in a manner similar to silicon, as explained above. The compound of manganese and oxygen is readily eliminated from the metal. Sufficient excess of elemental manganese should remain so that the purchaser may be sure that the iron has been properly "deoxidized," and to render harmless the traces of sulphur present. No damage is done by the presence of a little manganese in steel, quite the reverse. Consequently it is common to find steels containing from 0.3 to 1.5 per cent. ALLOYING ELEMENTS.--Commercial steels of even the simplest types are therefore prim
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:
oxygen
 

silicon

 

process

 

manganese

 

readily

 

chemical

 
steels
 
sulphur
 
making
 

furnace


silica

 

excess

 

properly

 
called
 

compound

 

stronger

 

dangerous

 

remove

 

manufacture

 

apparently


required

 

analysis

 

active

 

symbol

 
MANGANESE
 

notably

 

explained

 

reverse

 
Consequently
 

common


damage

 

presence

 
simplest
 

ALLOYING

 
ELEMENTS
 

Commercial

 

present

 

traces

 
acting
 

manner


similar
 
molten
 

Therefore

 

eliminated

 

Sufficient

 

deoxidized

 
render
 

harmless

 

purchaser

 

elemental