FREE BOOKS

Author's List




PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  
bessemer screw stock. It is sufficiently uniform to be used for unimportant carburized parts, as well as for non-heat-treated screw-machine parts. A number of the large automobile manufacturers are now specifying this material in preference to the regular bessemer grades. As second choice for carbon-steel screw-machine parts we recommend ordinary bessemer screw stock, purchased in accordance with S. A. E. specification No. 1114. The advantage of using No. 1114 steel lies in the fact that the majority of warehouses carry standard sizes of this material in stock at all times. The disadvantage of using this material is due to its lack of uniformity. The important criterion for transmission gears is resistance to wear. To secure proper resistance to wear a Brinell hardness of from 512 to 560 must be obtained. The material selected to obtain this hardness should be one which can be made most nearly uniform, will undergo forging operations the easiest, will be the hardest to overheat or burn, will machine best and will respond to a good commercial range of heat treatment. It is a well-known fact that the element chromium, when in the form of chromium carbide in alloy steel, offers the greatest resistance to wear of any combination yet developed. It is also a well-known fact that the element nickel in steel gives excellent shock-resisting properties as well as resistance to wear but not nearly as great a resistance to wear as chromium. It has been standard practice for a number of years for many manufacturers to use a high nickel-chromium steel for transmission gears. A typical nickel-chromium gear specification is as follows: Carbon, 0.470 to 0.520 per cent; manganese, 0.500 to 0.800 per cent; phosphorus, 0.040 maximum per cent; sulphur, 0.045 maximum per cent; chromium, 0.700 to 0.950 per cent. There is no question but that a gear made from material of such an analysis will give excellent service. However, it is possible to obtain the same quality of service and at the same time appreciably reduce the cost of the finished part. The gear steel specified is of the air-hardening type. It is extremely sensitive to secondary pipe, as well as seams, and is extremely difficult to forge and very easy to overheat. The heat-treatment range is very wide, but the danger from quenching cracks is very great. In regard to the machineability, this material is the hardest to machine of any alloy steel known. COMPOSITION OF TRANSM
PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  



Top keywords:

chromium

 
material
 

resistance

 

machine

 

nickel

 

bessemer

 

overheat

 

hardest

 
standard
 

hardness


transmission

 

maximum

 

service

 

obtain

 

excellent

 
extremely
 

element

 

treatment

 
number
 

manufacturers


uniform

 

specification

 

phosphorus

 

manganese

 
resisting
 

properties

 

Carbon

 

typical

 

practice

 

difficult


secondary

 

hardening

 
sensitive
 
danger
 

COMPOSITION

 

TRANSM

 

machineability

 

regard

 

quenching

 

cracks


question

 
analysis
 

However

 

finished

 

reduce

 

appreciably

 

quality

 

sulphur

 
operations
 
advantage