FREE BOOKS

Author's List




PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  
st star in the heavens, Cassiopeia, Perseus, Cygnus, and Lyra with its bright-blue Vega, not to mention such constellations as the Southern Cross, all lie in or near the Milky Way. Schiaparelli has extended the investigation to all the stars visible to the naked eye. He laid down on planispheres the number of such stars in each region of the heavens of 5 degrees square. Each region was then shaded with a tint that was darker as the region was richer in stars. The very existence of the Milky Way was ignored in this work, though his most darkly shaded regions lie along the course of this belt. By drawing a band around the sky so as to follow or cover his darkest regions, we shall rediscover the course of the Milky Way without any reference to the actual object. It is hardly necessary to add that this result would be reached with yet greater precision if we included the telescopic stars to any degree of magnitude--plotting them on a chart and shading the chart in the same way. What we learn from this is that the stellar system is not an irregular chaos; and that notwithstanding all its minor irregularities, it may be considered as built up with special reference to the Milky Way as a foundation. Another feature of the tendency in question is that it is more and more marked as we include fainter stars in our count. The galactic region is perhaps twice as rich in stars visible to the naked eye as the rest of the heavens. In telescopic stars to the ninth magnitude it is three or four times as rich. In the stars found on the photographs of the sky made at the Harvard and other observatories, and in the stargauges of the Herschels, it is from five to ten times as rich. Another feature showing the unity of the system is the symmetry of the heavens on the two sides of the galactic belt Let us return to our supposition of such a position of the celestial sphere, with respect to the horizon, that the latter coincides with the central line of this belt, one galactic pole being near our zenith. The celestial hemisphere which, being above our horizon, is visible to us, is the one to which we have hitherto directed our attention in describing the distribution of the stars. But below our horizon is another hemisphere, that of our antipodes, which is the counterpart of ours. The stars which it contains are in a different part of the universe from those which we see, and, without unity of plan, would not be subject to the same law. But
PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  



Top keywords:
region
 

heavens

 

horizon

 

visible

 

galactic

 

system

 
magnitude
 

regions

 

celestial

 

Another


feature

 

reference

 

telescopic

 

hemisphere

 
shaded
 

photographs

 

distribution

 

antipodes

 

tendency

 

question


foundation
 

marked

 

include

 
counterpart
 
subject
 

fainter

 

describing

 

zenith

 

position

 

supposition


universe

 

return

 

sphere

 

respect

 

central

 

coincides

 

special

 
Herschels
 

attention

 

directed


stargauges

 

observatories

 
hitherto
 
symmetry
 

showing

 

Harvard

 
included
 

square

 
degrees
 

planispheres