FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
hall find the distance of its boundary so great that millions of millions of years would be required for the light of the outer stars to reach the centre of the system. In view of the fact that this duration in time far exceeds what seems to be the possible life duration of a star, so far as our knowledge of it can extend, the mere fact that the sky does not glow with any such brightness proves little or nothing as to the extent of the system. We may, however, replace these purely negative considerations by inquiring how much light we actually get from the invisible stars of our system. Here we can make a definite statement. Mark out a small circle in the sky 1 degree in diameter. The quantity of light which we receive on a cloudless and moonless night from the sky within this circle admits of actual determination. From the measures so far available it would seem that, in the general average, this quantity of light is not very different from that of a star of the fifth magnitude. This is something very different from a blaze of light. A star of the fifth magnitude is scarcely more than plainly visible to ordinary vision. The area of the whole sky is, in round numbers, about 50,000 times that of the circle we have described. It follows that the total quantity of light which we receive from all the stars is about equal to that of 50,000 stars of the fifth magnitude--somewhat more than 1000 of the first magnitude. This whole amount of light would have to be multiplied by 90,000,000 to make a light equal to that of the sun. It is, therefore, not at all necessary to consider how far the system must extend in order that the heavens should blaze like the sun. Adopting Lord Kelvin's hypothesis, we shall find that, in order that we may receive from the stars the amount of light we have designated, this system need not extend beyond some 5000 light-years. But this hypothesis probably overestimates the thickness of the stars in space. It does not seem probable that there are as many as 1,000,000,000 stars within the sphere of 3300 light-years. Nor is it at all certain that the light of the average star is equal to that of the sun. It is impossible, in the present state of our knowledge, to assign any definite value to this average. To do so is a problem similar to that of assigning an average weight to each component of the animal creation, from the microscopic insects which destroy our plants up to the elephant. What we can say
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:
system
 

magnitude

 

average

 

extend

 

circle

 

quantity

 
receive
 

hypothesis

 

definite

 

knowledge


duration

 

millions

 

amount

 

Adopting

 
multiplied
 

heavens

 

assigning

 

weight

 

similar

 

problem


assign
 

component

 

animal

 
elephant
 
plants
 

destroy

 

creation

 

microscopic

 

insects

 

present


designated

 

overestimates

 

thickness

 

impossible

 

sphere

 

probable

 

Kelvin

 
determination
 

brightness

 

proves


purely

 

negative

 
replace
 
extent
 

required

 

boundary

 
distance
 

exceeds

 
centre
 

considerations