FREE BOOKS

Author's List




PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  
I, I, which is struck from the centre S'. Now suppose that D moves to E, and if we take the radius D, H, and from E mark it upon the arc I as at V, then H will obviously be the new position of H. To find the new position of G we first strike the arc J, J, because in every position of G it will be somewhere on the arc J, J. To find where that will be when H is at V, take the radius H, G, and from V as a centre mark it on J, J, as at K, which is the position of G when D is at E and H is at V. For the positions when D is at F we repeat the process, taking the radius D, H, and from F marking P, and with the radius H, G, and from P as a centre marking Q; then P is the new position for H, and Q is that for G. [Illustration: Fig. 263.] In Figure 264 a lever arm A and cam C are in one piece on a shaft. S is a shoe sliding on the line _x_, and held against the cam face by the rod R; it is required to find the position of the face of the shoe against the cam when the end of the arm is at D. Draw line E from D to the axis of the shaft and line F. From the shaft axis as a centre draw circle W; draw line J parallel to _x_. Take the radius G H, and from K as a centre mark point P on W; draw line Q from the shaft axis through P, and mark point T. From the shaft axis as a centre draw from T an arc, cutting J at V, and V is the point where the face of the shoe and the face of the cam will touch when the arm stands at D. [Illustration: Fig. 264.] Let it be required to find the amount of motion imparted in a straight line to a rod attached to an eccentric strap, and the following construction may be used. In Figure 265 let A represent the centre of the shaft, and, therefore, the axis about which the eccentric revolves. Let B represent the centre of the eccentric, and let it be required to find in what position on the line of motion _x_, the centre C of the rod eye will be when the centre B of the eccentric has moved to E. Now since A is the axis, the centre B of the eccentric must rotate about it as denoted by the circle D, and all that is necessary to find the position of C for any position of eccentric is to mark the position of B on circle D, as at E, and from that position, as from E, as a centre, and with the length of the rod as a radius, mark the new position of C on the line _x_ of its motion. With the centre of the eccentric at B, the line Q, representing the faces of the straps, will stand at a right angle to the line
PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  



Top keywords:

centre

 

position

 

eccentric

 
radius
 
circle
 

motion


required

 

represent

 
marking
 

Figure

 
Illustration
 

attached


construction

 

representing

 

straps

 

revolves

 

rotate

 

denoted


length
 

straight

 

strike

 

process

 

repeat

 

positions


taking

 

sliding

 

cutting

 

stands

 

struck

 

amount


parallel

 

suppose

 
imparted