FREE BOOKS

Author's List




PREV.   NEXT  
|<   515   516   517   518   519   520   521   522   523   524   525   526   527   528   529   530   531   532   533   534   535   536   537   538   539  
540   541   542   543   544   545   546   547   548   549   550   551   552   553   554   555   556   557   558   559   560   561   562   563   564   >>   >|  
ly. Inasmuch as a magnet has the power of attracting to itself pieces of iron or steel, the basic importance of an electromagnet in telegraphy will be at once apparent when we consider the sounder, whose clicks are familiar to every ear. This instrument consists essentially of an electro-magnet of horseshoe form with its two poles close together, and with its armature, a bar of iron, maintained in close proximity to the poles, but kept normally in a retracted position by a spring. When the distant operator presses down his key the circuit is closed and a current passes along the line and through the (generally two) coils of the electromagnet, thus magnetizing the iron core. Its attractive power draws the armature toward the poles. When the operator releases the pressure on his key the circuit is broken, current does not flow, the magnetic effect ceases, and the armature is drawn back by its spring. These movements give rise to the clicking sounds which represent the dots and dashes of the Morse or other alphabet as transmitted by the operator. Similar movements, produced in like manner, are availed of in another instrument known as the relay, whose office is to act practically as an automatic transmitter key, repeating the messages received in its coils, and sending them on to the next section of the line, equipped with its own battery; or, when the message is intended for its own station, sending the message to an adjacent sounder included in a local battery circuit. With a simple circuit, therefore, between two stations and where an intermediate battery is not necessary, a relay is not used. Passing on to the consideration of another phase of the phenomena of electromagnetism, the reader's attention is called to Fig. 1, in which will be seen on the left a simple form of electromagnet consisting of a bar of soft iron wound around with insulated wire, through which a current is flowing from a battery. The arrows indicate the direction of flow. All magnets have two poles, north and south. A permanent magnet (made of steel, which, as distinguished from soft iron, retains its magnetism for long periods) is so called because it is permanently magnetized and its polarity remains fixed. In an electromagnet the magnetism exists only as long as current is flowing through the wire, and the polarity of the soft-iron bar is determined by the DIRECTION of flow of current around it for the time being. If the direction is reverse
PREV.   NEXT  
|<   515   516   517   518   519   520   521   522   523   524   525   526   527   528   529   530   531   532   533   534   535   536   537   538   539  
540   541   542   543   544   545   546   547   548   549   550   551   552   553   554   555   556   557   558   559   560   561   562   563   564   >>   >|  



Top keywords:

current

 

electromagnet

 

circuit

 
battery
 

armature

 

operator

 

magnet

 
direction
 
sending
 

message


simple

 

flowing

 

called

 

movements

 

spring

 
instrument
 

sounder

 

polarity

 

magnetism

 

intermediate


reverse

 

stations

 

exists

 

phenomena

 
consideration
 

Passing

 

adjacent

 
station
 
determined
 

intended


included
 

section

 

equipped

 

electromagnetism

 

DIRECTION

 

received

 
retains
 

arrows

 

periods

 
distinguished

magnets

 

permanent

 

attention

 
magnetized
 

permanently

 

insulated

 

consisting

 

remains

 

reader

 
proximity