FREE BOOKS

Author's List




PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  
om the surface of the main tube (Fig. 28). Fig. 28. Fig. 29. When this stage is reached, again heat the tube all round till it nearly softens, and by means of the other hand heat the end of the other tube which it is proposed to weld. Just before the main tube actually softens, turn it so as to heat the edges of the aperture, and at the same time get the end of the side tube very hot. Take both out of the flame for an instant, and press the parts together, instantly slightly withdrawing the side tube. If the operation is well performed, it will be found that the point of maximum thickness of glass is now clear of the main tube. The joint is then to be heated all round and blown out--a rather awkward operation, and one requiring some practice, but it can be done. Fig. 30. If great strength is wanted, heat the main tube all round the joint bit by bit, and blow each section slightly outwards. If the operator is confident in his skill, he should then heat the whole joint to the softening point, blow it out slightly, and then adjust by pulling and pushing. Cool first in the gas flame, and then plunge the joint into the asbestos and cover it up--or if too large, throw the asbestos cloth round it. In the case of soda glass this final "general heat" is almost essential, but it is not so with flint glass, and as the general heat is the most difficult part of the job, it will be found easier to use lead glass and omit the general heating. With soda glass a very small irregularity will cause the joint to break when cold, but flint glass is much more long-suffering. It is easy to perform the above operation on small tubes. For large ones it will be found best to employ flint glass and use the clip stands as in the case of direct welds, treated above, but, of course, with suitable modifications. Never let the main tube cool after the hole is made until the work is done. Sec. 34. Inserted Joints. In many instances the performance of apparatus is much improved by joints of this kind, even when their use is not absolutely essential. There are two ways in which inserted joints may be made. The first method is the easier, and works well with flint glass; but when one comes to apply it to soda glass there is a danger of the glass becoming too thick near the joint, and this often leads to a cracking of the joint as the glass cools. Fig. 31. Suppose it is desired to insert the tube B into the tube
PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  



Top keywords:
operation
 

slightly

 

general

 

joints

 

essential

 

softens

 
easier
 
asbestos
 
heating
 

direct


stands

 

employ

 

suffering

 
treated
 

perform

 

irregularity

 

Inserted

 

danger

 

method

 

inserted


Suppose

 

desired

 

insert

 

cracking

 
suitable
 

modifications

 

absolutely

 

improved

 
apparatus
 

Joints


instances

 

performance

 
adjust
 

instant

 
maximum
 

thickness

 

performed

 

instantly

 
withdrawing
 

aperture


reached
 
surface
 

proposed

 

heated

 

plunge

 

pushing

 
pulling
 

softening

 

difficult

 

practice