FREE BOOKS

Author's List




PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  
f point is to get a very even and not too thick ring at the junction, and consequently the extra thickening produced by making a rim on B is rather a drawback. The method consists in cutting off from B the length which it is desired to insert, slipping this into A (which may be an otherwise closed bulb, for instance), and then gradually melting up the open end of A till the piece of B inside will no longer fall out. By holding the joint downwards so that the inserted portion of B rests on the edges of the opening, a joint may be made with the minimum thickening. The external part of B, previously heated, is then applied, and the joint subjected to a "general" heat and blown out. Very nice joints may be made by this method, and it is perhaps the better one where the external part of B is to be less in diameter than the inserted part. It was in this manner that the writer was taught to make glass velocity pumps, one of which, of a good design, is figured as an example. In all cases good annealing should follow this operation. If the inserted part of the inner tube (B) is anything like an inch in diameter, and especially if it is of any length, as in some forms of ozone apparatus, or in a large Bunsen's ice calorimeter, the arrangements for supporting the inner part must be very good. A convenient way of proceeding when the inner tube is well supported is to make the mouth of A only very little larger than the diameter of B, so that B will only just slip in. Then the mouth of A and the zone of B may be heated together, and B blown out upon A. This, of course, must be arranged for, if necessary, by temporarily stopping the inner end of B. The inner support of B should be removed as soon as practicable after the joint is made, or, at all events, should not be perfectly rigid; a tightly-fitting cork, for instance, is too rigid. The reason is, of course, that in cooling there may be a tendency to set B a little to one side or the other, and if it is not free to take such a set, the joint most probably will give way. Good annealing both with flame and asbestos is a sine qua non in all inserted work. Fig. 34. Sec. 35. Bending Tubes. I have hitherto said nothing about bending tubes, for to bend a tube of a quarter of an inch in diameter, and of ordinary thickness, is about the first thing one learns in any laboratory, while to bend large tubes nicely is as difficult an operation as the practice of glass-b
PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  



Top keywords:
inserted
 

diameter

 

external

 

heated

 

annealing

 

method

 
length
 
thickening
 
operation
 

instance


convenient

 

larger

 

events

 
practicable
 

removed

 

supported

 

temporarily

 

stopping

 

support

 

proceeding


arranged

 

hitherto

 

bending

 

Bending

 
quarter
 

ordinary

 

nicely

 

difficult

 
practice
 

laboratory


thickness

 

learns

 
tendency
 

cooling

 
tightly
 

fitting

 

reason

 

asbestos

 
perfectly
 

figured


gradually
 
melting
 

closed

 

slipping

 

holding

 

portion

 
inside
 

longer

 

insert

 

desired