FREE BOOKS

Author's List




PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   >>  
object. He ascribed an erect vision to an operation of the mind, by which it traces the rays back to the pupil, where they cross one another, and thus refers the lower parts of the image to the higher parts of the object. He also explained the cause of long-sighted and short-sighted vision, and shewed how convex and concave lenses enabled those who possessed these peculiarities of vision to see distinctly, by accurately converging the pencils of rays to a focus on the retina. Kepler likewise observed the power of accommodating the eye to different distances, and he ascribed it to the contraction of the ciliary processes, which drew the sides of the eyeball towards the crystalline lens, and thus elongated the eye so as to produce an adjustment of it for near objects. Kepler wisely declined to inquire into the way in which the mind perceives the images painted on the retina, and he blames Vitellio for attempting to determine a question which he considered as not belonging to optics. The work of Kepler, now under consideration, contains the method of calculating eclipses which is now in use at the present day. The only other optical treatise written by Kepler, was his _Dioptrics_, with an appendix on the use of optics in philosophy. This admirable work, which laid the foundation of the science, was published at Augsburg in 1611, and reprinted at London in 1653. Although Maurolycus had made some slight progress in studying the passage of light through different media, yet it is to Kepler that we owe the methods of tracing the progress of rays through transparent bodies with convex and concave surfaces, and of determining the foci of lenses, and of the relative positions of the images which they form, and the objects from which the rays proceed. He was thus led to explain the _rationale_ of the telescope, and to invent the astronomical telescope, which consists of two convex lenses, by which objects are seen inverted. Kepler also discovered the important fact, that spherical surfaces were not capable of converging rays to a single focus, and he conjectured, what Descartes afterwards proved, that this property might be possessed by lenses having the figure of some of the sections of the cone. The total reflection of light at the second surface of bodies was likewise studied by Kepler, and he determined that the total reflection commenced when the angle of incidence was equal to the angle of refraction, which corresponded t
PREV.   NEXT  
|<   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131  
132   133   134   135   >>  



Top keywords:

Kepler

 

lenses

 

objects

 

convex

 

vision

 

telescope

 

likewise

 

progress

 
retina
 

optics


bodies
 

images

 

surfaces

 
converging
 

concave

 
sighted
 
object
 

ascribed

 

reflection

 

possessed


commenced

 

studied

 
tracing
 

transparent

 
methods
 

surface

 

determined

 

London

 
Although
 

reprinted


science

 

published

 

Augsburg

 

Maurolycus

 

studying

 

passage

 

refraction

 

corresponded

 
slight
 
incidence

spherical

 

capable

 

foundation

 

important

 

figure

 

conjectured

 

Descartes

 

proved

 

single

 

property