FREE BOOKS

Author's List




PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  
ating device. We also remember in the year 1873 or 1874, when his mind was occupied with his "Standard turbine," he was hindered by some device used now on locomotives of the present construction (what it was we are unable to say), but when draughting at his water wheel, would conflict the two, and by his invitation we wrote to a prominent locomotive builder and had him examine the drawings, which he had not fully completed, and sold same to him. Of this we only have a faint recollection, but do recollect his saying: "Well, that is off my mind now, and I can devote it to the finishing of my new wheel."--_American Miller_. * * * * * ALTERNATE CURRENT CONDENSERS. At a recent meeting of the Physical Society, London, Mr. James Swinburne read a paper on alternate current condensers. It is, he said, generally assumed that there is no difficulty in making commercial condensers for high pressure alternating currents. The first difficulty is insulation, for the dielectric must be very thin, else the volume of the condenser is too great. Some dielectrics 0.2 mm. thick can be made to stand up to 8,000 volts when in small pieces, but in complete condensers a much greater margin must be allowed. Another difficulty arises from absorption, and whenever this occurs, the apparent capacity is greater than the calculated. Supposing the fibers of paper in a paper condenser to be conductors embedded in insulating hydrocarbon, then every time the condenser is charged the fibers have their ends at different potentials, so a current passes to equalize them and energy is lost. This current increases the capacity. One condenser made of paper boiled in ozokerite took an abnormally large current and heated rapidly. At a high temperature it gave off water, and the power wasted and current taken gradually decreased. When a thin plate of mica is put between tin foils, it heats excessively; and the fall of potential over the air films separating the mica and foil is great enough to cause disruptive discharge to the surface of the mica. There appears to be a luminous layer of minute sparks under the foils, and there is a strong smell of ozone. In a dielectric which heats, there may be three kinds of conduction, viz., metallic, when an ordinary conductor is embedded in an insulator; disruptive, as probably occurs in the case of mica; and electrolytic, which might occur in glass. In a transparent dielectric
PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  



Top keywords:

current

 

condenser

 

dielectric

 

condensers

 

difficulty

 

device

 
disruptive
 

greater

 

fibers

 
occurs

capacity

 

embedded

 

boiled

 

increases

 
abnormally
 

ozokerite

 
energy
 

calculated

 

Supposing

 

conductors


apparent
 

Another

 

arises

 

absorption

 

insulating

 
hydrocarbon
 

potentials

 

passes

 

charged

 

equalize


conduction

 

strong

 

luminous

 

minute

 

sparks

 
metallic
 

electrolytic

 
transparent
 

ordinary

 

conductor


insulator

 
appears
 

decreased

 

allowed

 

gradually

 

temperature

 
rapidly
 

wasted

 
excessively
 
discharge