FREE BOOKS

Author's List




PREV.   NEXT  
|<   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211  
212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   >>   >|  
ubstituted for ether. Sugar may be separated from the other impurities by treating the residue insoluble in ether or benzene with rectified spirit, in which sugar and boric acid alone will dissolve. If boric acid be present, the alcoholic solution will burn with a green flame. Mono- and di-nitrophenic acids lower the melting point (122 deg. C). Their calcium salts are less soluble than the picrate, and may be approximately separated from it by fractional crystallisation, or by precipitating the hot saturated solution of the sample with excess of lime water. Picric acid may be determined by extracting the acidulated aqueous solution by agitation with ether or benzene, and subsequently removing and evaporating off the solvent. It may also be precipitated as the potassium salt. ~Potassium Picrate~ [KC_{6}H_{2}(NO_{2})_{3}O]. When a strong solution of picric acid is neutralised by carbonate of potash, this salt is thrown down in yellow crystalline needles, which require 260 parts of cold or 14 parts of hot water for their solution. In alcohol it is much less soluble. ~Ammonium Picrate~ is more soluble in water than the above, and sodium picrate is readily soluble in water, but nearly insoluble in solution of sodium carbonate. ~Picrates of the Alkaloids.~--Picric acid forms insoluble salts with many of the alkaloids, and picric acid may be determined in the following manner:--To the solution of picric acid, or a picrate, add a solution of sulphate of cinchonine acidulated with H_{2}SO_{4}. The precipitated picrate of cinchonine [C_{20}H_{24}N_{2}O(C_{6}H_{2}N_{3}O_{7})_{2}] is washed with cold water, rinsed off the filter into a porcelain crucible or dish, the water evaporated on the water bath, and the residual salt weighed. Its weight, multiplied by .6123, gives the quantity of picric acid in the sample taken. ~Analysis of Glycerine.~[A] Glycerine that is to be used for the manufacture of nitro-glycerine should have a minimum specific gravity of 1.261 at 15 deg. C. This can be determined, either by the aid of a Sartorius specific gravity balance, or by using an ordinary specific gravity bottle. One of 10 or 25 c.c. capacity is very convenient. [Footnote A: See also Sulman and Berry, _Analyst_, xi., 12-34, and Allen's "Commercial Organic Analysis," vol. ii., part i.] ~Residue~[A] left upon evaporation should not be more than 0.25 per cent. To determine this, take 25 grms. of the glycerine, and evaporate it at a
PREV.   NEXT  
|<   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211  
212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   >>   >|  



Top keywords:

solution

 

picric

 

picrate

 
soluble
 

specific

 
insoluble
 

gravity

 

determined

 

acidulated

 

precipitated


sample

 

Picrate

 

Picric

 

Glycerine

 

Analysis

 
glycerine
 

cinchonine

 

carbonate

 
sodium
 

benzene


separated

 

treating

 

manufacture

 

impurities

 

minimum

 

rectified

 

residual

 
evaporated
 

porcelain

 

crucible


weighed
 

residue

 
quantity
 

weight

 

multiplied

 

Residue

 
Commercial
 

Organic

 

evaporation

 

evaporate


determine

 

ubstituted

 

bottle

 

ordinary

 
balance
 

filter

 

capacity

 
Analyst
 

Sulman

 

convenient