FREE BOOKS

Author's List




PREV.   NEXT  
|<   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214  
215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   >>   >|  
atty acids the free fatty acid is deducted, and the quantity of combined fatty acids thus obtained. ~Impurities.~ The following impurities may be found in bad samples of glycerine:--Lead, arsenic, lime, chlorine, sulphuric acid, thio-sulphates, sulphides, cyanogen compounds, organic acids (especially oleic acid and fatty acids[A]), rosin products, and other organic bodies. It is also said to be adulterated with sugar and glucose dextrine. Traces of sulphuric acid and arsenic may be allowed, also very small traces indeed of lime and chlorine. [Footnote A: These substances often cause trouble in nitrating, white flocculent matter being formed during the process of washing.] The organic acids, formic and butyric acids may be detected by heating a sample of the glycerine in a test tube with alcohol and sulphuric acid, when, if present, compound ethers, such as ethylic formate and butyrate, the former smelling like peaches and the latter of pine-apple, will be formed. ~Oleic Acid~, if present in large quantity, will come down upon diluting the sample with water, but smaller quantities may be detected by passing a current of nitrogen peroxide, N_{2}O_{4} (obtained by heating lead nitrate), through the diluted sample, when a white flocculent precipitate of elaidic acid, which is less soluble than oleic acid, will be thrown down. By agitating glycerol with chloroform, fatty acids, rosin oil, and some other impurities are dissolved, while certain others form a turbid layer between the chloroform and the supernatant liquid. On separating the chloroform and evaporating it to dryness, a residue is obtained which may be further examined. ~Sodium Chloride~ can be determined in 100 c.c. of the glycerine by adding a little water, neutralised with sodium carbonate, and then titrated with a deci-normal solution of silver nitrate, using potassium chromate as indicator. ~Organic Impurities~ of various kinds occur in crude glycerine, and are mostly objectionable. Their sum may be determined with fair accuracy by Sulman and Berry's method: 50 grms. of the sample are diluted with twice its measure of water, carefully neutralised with acetic acid, and warmed to expel carbonic acid; when cold, a solution of basic lead acetate is added in slight but distinct excess, and the mixture well agitated. The formation of an abundant precipitate, which rapidly subsides, is an indication of considerable impurity in the sample. To ascertain its
PREV.   NEXT  
|<   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214  
215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   >>   >|  



Top keywords:
sample
 
glycerine
 

sulphuric

 

organic

 

obtained

 
chloroform
 
flocculent
 

formed

 

heating

 

detected


precipitate

 

neutralised

 

solution

 
determined
 

diluted

 

nitrate

 

present

 
chlorine
 
arsenic
 

impurities


Impurities

 

quantity

 

sodium

 

carbonate

 
potassium
 

chromate

 

indicator

 

Organic

 
silver
 
adding

normal

 

deducted

 

titrated

 

supernatant

 

liquid

 

separating

 

turbid

 

evaporating

 

Chloride

 
Sodium

examined
 

dryness

 

residue

 
combined
 
distinct
 

excess

 

mixture

 

slight

 
acetate
 
agitated