FREE BOOKS

Author's List




PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  
The explosive bodies formed by the nitration of jute have been studied by Messrs Cross and Bevan. and also by Muehlhaeuer. The former chemists give jute the formula C_{12}H_{18}O_{9}, and believe that its conversion into a nitro-compound takes place according to the equation-- C_{12}H_{18}O_{9} + 3HNO_{3} = 3H_{2}O + C_{12}H_{15}O_(6}(NO_{3})_{3}. This is equivalent to a gain in weight of 44 per cent. for the tri- nitrate, and 58 per cent. for the tetra-nitrate. The formation of the tetra-nitrate appears to be the limit of nitration of jute fibre. Messrs Cross and Bevan say, "In other words, if we represent the ligno-cellulose molecule by a C_{12} formula, it will contain four hydroxyl (OH) groups, or two less than cellulose similarly represented." It contains 11.5 per cent. of nitrogen. The jute nitrates resemble those of cellulose, and are in all essential points nitrates of ligno-cellulose. Nitro-jute is used in the composition of the well-known Cooppal Smokeless Powders. Cross and Bevan are of opinion that there is no very obvious advantage in the use of lignified textile fibres as raw materials for explosive nitrates, seeing that a number of raw materials containing cellulose (chiefly as cotton) can be obtained at from L10 to L25 a ton, and yield also 150 to 170 per cent. of explosive material when nitrated (whereas jute only gives 154.4 per cent.), and are in many ways superior to the products obtained from jute. Nitro-lignin, or nitrated wood, is, however, largely used in the composition of a good many of the smokeless powders, such as Schultze's, the Smokeless Powder Co.'s products, and others. ~The Danger Area.~--That portion of the works that is devoted to the actual manufacture or mixing of explosive material is generally designated by the term "danger area," and the buildings erected upon it are spoken of as "danger buildings." The best material of which to construct these buildings is of wood, as in the event of an explosion they will offer less resistance, and will cause much less danger than brick or stone buildings. When an explosion of nitro-glycerine or dynamite occurs in one of these buildings, the sides are generally blown out, and the roof is raised some considerable height, and finally descends upon the blown-out sides. If, on the other hand, the same explosion had occurred in a strong brick or stone building, the walls of which would offer a much larger resistance, large pieces of brickwor
PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  



Top keywords:

cellulose

 

buildings

 
explosive
 

nitrate

 

explosion

 
danger
 

nitrates

 

material

 

generally

 

Smokeless


composition
 

resistance

 
products
 

materials

 

formula

 

obtained

 

nitrated

 
nitration
 

Messrs

 

smokeless


powders

 
portion
 

Schultze

 

superior

 

lignin

 
Powder
 

Danger

 
largely
 
descends
 

finally


considerable
 

height

 

occurred

 

pieces

 

brickwor

 

larger

 
strong
 

building

 

raised

 

erected


spoken

 

designated

 

actual

 
manufacture
 
mixing
 

construct

 

dynamite

 

occurs

 

glycerine

 

devoted