FREE BOOKS

Author's List




PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  
ose, the cotton, hay, &c., having been converted into a highly porous friable and combustible mass, may then ignite in certain circumstances by the occlusion of oxygen, just as ignition is induced by finely divided metals. A remarkable point in this connexion has always been the necessary conclusion that the living bacteria concerned must be exposed to temperatures of at least 70deg C. in the hot heaps. Apart from the resolution of doubts as to the power of spores to withstand such temperatures for long periods, the discoveries of Miquel, Globig and others have shown that there are numerous bacteria which will grow and divide at such temperatures, _e.g._ _B. thermophilus_, from sewage, which is quite active at 70deg C., and _B. Ludwigi_ and _B. ilidzensis_, &c., from hot springs, &c. [Sidenote: Phosphorescent bacteria.] The bodies of sea fish, _e.g._ mackerel and other animals, have long been known to exhibit phosphorescence. This phenomenon is due to the activity of a whole series of marine bacteria of various genera, the examination and cultivation of which have been successfully carried out by Cohn, Beyerinck, Fischer and others. The cause of the phosphorescence is still a mystery. The suggestion that it is due to the oxidation of a body excreted by the bacteria seems answered by the failure to filter off or extract any such body. Beyerinck's view that it occurs at the moment peptones are worked up into the protoplasm cannot be regarded as proved, and the same must be said of the suggestion that the phosphorescence is due to the oxidation of phosphoretted hydrogen. The conditions of phosphorescence are, the presence of free oxygen, and, generally, a relatively low temperature, together with a medium containing sodium chloride, and peptones, but little or no carbohydrates. Considerable differences occur in these latter respects, however, and interesting results were obtained by Beyerinck with mixtures of species possessing different powers of enzyme action as regards carbohydrates. Thus, a form termed _Photobacterium phosphorescens_ by Beyerinck will absorb maltose, and will become luminous if that sugar is present, whereas _P. Pflugeri_ is indifferent to maltose. If then we prepare densely inseminated plates of these two bacteria in gelatine food-medium to which starch is added as the only carbohydrate, the bacteria grow but do not phosphoresce. If we now streak these plates with an organism, _e.g._ a yeast, which
PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  



Top keywords:

bacteria

 

Beyerinck

 
phosphorescence
 

temperatures

 

oxidation

 

suggestion

 

peptones

 

medium

 

carbohydrates

 

maltose


oxygen
 
plates
 
organism
 

generally

 

conditions

 

presence

 
temperature
 

chloride

 

streak

 

Pflugeri


hydrogen
 

sodium

 

proved

 

densely

 

prepare

 

moment

 

occurs

 

extract

 

indifferent

 

worked


regarded
 

protoplasm

 

phosphoretted

 

Considerable

 

powers

 

enzyme

 

action

 

luminous

 

mixtures

 

species


possessing
 

gelatine

 

phosphorescens

 

starch

 

Photobacterium

 
termed
 

absorb

 

obtained

 

respects

 

phosphoresce