FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
in agriculture, viz. that it is a wasteful process to put nitrates and manure together on the land. Fresh manure abounds in de-nitrifying bacteria, and these organisms not only reduce the nitrates to nitrites, even setting free nitrogen and ammonia, but their effect extends to the undoing of the work of what nitrifying bacteria may be present also, with great loss. The combined nitrogen of dead organisms, broken down to ammonia by putrefactive bacteria, the ammonia of urea and the results of the fixation of free nitrogen, together with traces of nitrogen salts due to meteoric activity, are thus seen to undergo various vicissitudes in the soil, rivers and surface of the globe generally. The ammonia may be oxidized to nitrites and nitrates, and then pass into the higher plants and be worked up into proteids, and so be handed on to animals, eventually to be broken down by bacterial action again to ammonia; or the nitrates may be degraded to nitrites and even to free nitrogen or ammonia, which escapes. [Sidenote: Bacteria and Leguminosae.] That the Leguminosae (a group of plants including peas, beans, vetches, lupins, &c.) play a special part in agriculture was known even to the ancients and was mentioned by Pliny (_Historia Naturalis_, viii). These plants will not only grow on poor sandy soil without any addition of nitrogenous manure, but they actually enrich the soil on which they are grown. Hence leguminous plants are essential in all rotation of crops. By analysis it was shown by Schulz-Lupitz in 1881 that the way in which these plants enrich the soil is by increasing the nitrogen-content. Soil which had been cultivated for many years as pasture was sown with lupins for fifteen years in succession; an analysis then showed that the soil contained more than three times as much nitrogen as at the beginning of the experiment. The only possible source for this increase was the atmospheric nitrogen. It had been, however, an axiom with botanists that the green plants were unable to use the nitrogen of the air. The apparent contradiction was explained by the experiments of H. Hellriegel and Wilfarth in 1888. They showed that, when grown on sterilized sand with the addition of mineral salts, the Leguminosae were no more able to use the atmospheric nitrogen than other plants such as oats and barley. Both kinds of plants required the addition of nitrates to the soil. But if a little water in which arable soil had been shaken u
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:

nitrogen

 

plants

 
ammonia
 

nitrates

 

addition

 

nitrites

 

Leguminosae

 

manure

 

bacteria

 

atmospheric


showed
 
enrich
 
broken
 

analysis

 

lupins

 

nitrifying

 
agriculture
 

organisms

 

wasteful

 

contained


succession
 

fifteen

 

process

 

experiment

 

beginning

 

Lupitz

 

Schulz

 

rotation

 

increasing

 

content


source
 

cultivated

 

abounds

 

pasture

 

increase

 

barley

 

mineral

 

arable

 

shaken

 

required


sterilized
 

unable

 

botanists

 

apparent

 

Wilfarth

 
Hellriegel
 

contradiction

 

explained

 

experiments

 

undoing