FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
lt, and [mu] for the coefficient of friction, Q/P = [epsilon]^{[mu]^{[theta]}}, or for a given arc of contact Q = [kappa]P, where [kappa] depends only on the coefficient of friction, increasing as [mu] increases, and _vice versa_. Hence, for the belt to remain at rest with two fixed weights, Q and P, it is necessary that the coefficient of friction should be exactly constant. But this constancy cannot be obtained. The coefficient of friction varies with the condition of lubrication of the surface of the pulley, which alters during the running and with every change in the velocity and temperature of the rubbing surfaces. Consequently, in a dynamometer in this simple form more or less violent oscillations of the weights are set up, which cannot be directly controlled without impairing the accuracy of the dynamometer. Professors Ayrton and Perry have recently used a modification of this dynamometer, in which the part of the cord nearest to P is larger and rougher than the part nearest to Q. The effect of this is that when the coefficients of friction increase, Q rises a little, and diminishes the amount of the rougher cord in contact, and _vice versa_. Thus reducing the friction, notwithstanding the increase of the coefficient. This is very ingenious, and the only objection to it, if it is an objection, is that only a purely empirical adjustment of the friction can be obtained, and that the range of the adjustment cannot be very great. If in place of one of the weights we use a spring balance, as in Figs. 2 and 3, we get a dynamometer which automatically adjusts itself to changes in the coefficient of friction. [Illustration: FIG.2 FIG.3] For any increase in the coefficient, the spring in Fig. 2 lengthens, Q increases, and the frictional resistance on the surface of the pulley increases, both in consequence of the increase of Q, which increases the pressure on the pulley, and of the increase of the coefficient of friction. Similarly for any increase of the coefficient of friction, the spring in Fig. 3 shortens, P diminishes, and the friction on the surface of the pulley diminishes so far as the diminution of P diminishes the normal pressure, but on the whole increases in consequence of the increase of the coefficient of friction. The value of the friction on the surface of the pulley, however, is more constant for a given variation of the frictional coefficient in Fig. 3 than in Fig. 2, and the variation of the
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:

friction

 

coefficient

 

increase

 

pulley

 

increases

 

surface

 

dynamometer

 

diminishes

 

weights

 
spring

obtained
 

contact

 

objection

 
adjustment
 

nearest

 

rougher

 
variation
 

pressure

 
consequence
 

frictional


constant
 

amount

 

empirical

 

reducing

 

ingenious

 

notwithstanding

 

purely

 

normal

 

diminution

 

Illustration


lengthens

 

resistance

 

shortens

 
balance
 

Similarly

 

adjusts

 

automatically

 
constancy
 

varies

 
condition

lubrication
 
change
 

running

 

alters

 

epsilon

 

depends

 

increasing

 

remain

 
velocity
 

temperature