FREE BOOKS

Author's List




PREV.   NEXT  
|<   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124  
125   126   127   128   129   130   131   132   133   134   135   136   137   138   >>  
y the heat energy that is stored in the water. And when this energy is given up to a certain degree the power that holds the spring wound up is suddenly released, when it unwinds and occupies a larger space. There is a force that we may call polar force, which is constantly tending to push the molecules of water into an arrangement such as we see when crystallization takes place--as it always does in the act of freezing. These polar forces cannot act so long as the energy in the form of heat is sufficient to hold the water in the fluid state. But the moment this energy, which tends to hold it in the fluid state, falls below that which tends to rearrange it into the crystalline form, it is overcome by the superior power of the latter force, and we have the phenomenon of solidified water. A very interesting experiment may be performed with a block of ice by anyone when the ice is near the melting point. If a wire is put around the ice and a sufficient weight is suspended to it, the pressure of the wire on the ice will gradually liquefy that portion immediately under the wire, which allows it to sink into the ice slowly, and as this process goes on the ice freezes together again behind the wire, so that in time the wire will pass entirely through the block and leave it still a solid block, as it was before the experiment began. This is an interesting fact which it will be well to remember when we come to explain glacial action, or rather the law that governs glacial action. If we take two pieces of melting ice and bring them together they immediately congeal at the point of contact. This phenomenon is called "regelation." Ice has some of the properties of a viscous substance. It will yield slowly to pressure, especially when near the melting point, but if put under a tensional strain it will break, as any brittle substance will, so that it has the properties of both viscosity and brittleness. Ordinarily we are in the habit of treating water as a fluid and ice as a solid, but from what has gone before the reader must understand that in a certain sense ice should be treated as having semi-fluidic properties. CHAPTER XXIV. WHY DOES ICE FLOAT? Nature is full of surprises. By a long series of experimental investigations you think you have established a law that is as unalterable as those of the Medes and Persians. But once in a while you stumble upon phenomena that seem to contradict all that has gone before.
PREV.   NEXT  
|<   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124  
125   126   127   128   129   130   131   132   133   134   135   136   137   138   >>  



Top keywords:

energy

 

properties

 

melting

 

experiment

 

interesting

 

sufficient

 

phenomenon

 

glacial

 
action
 

slowly


substance

 

pressure

 
immediately
 
brittle
 

strain

 

tensional

 

brittleness

 

treating

 

Ordinarily

 

viscosity


congeal
 

contact

 

pieces

 
called
 

regelation

 

viscous

 

stored

 

understand

 

unalterable

 

established


experimental

 

investigations

 

Persians

 
contradict
 

phenomena

 
stumble
 

series

 
fluidic
 
treated
 

CHAPTER


Nature
 

surprises

 
reader
 

molecules

 

performed

 

arrangement

 

tending

 

weight

 
suspended
 

constantly